

Informationen zum Thema "Hochwasser": Ursachen, Schutz und Vorsorge.

Inhalt.

Informationen zum Thema "Hochwasser": Ursachen, Schutz und Vorsorge.

- 2 Naturereignis Hochwasser.
- 4 Der natürliche Fluss.
- 6 Fluss und Aue.
- 10 Wie ein Hochwasser entsteht.
- 14 Land unter.
- 20 Hochwasserschutz.
- 26 Mit Hochwasser leben.
- 28 Glossar.
- 30 Literatur und Internet.
- 32 Allianz Umweltstiftung.

Folien.


Impressum.

Naturereignis Hochwasser.

"Die Natur versteht keinen Spaß, sie ist immer wahr, immer ernst, immer strenge; sie hat immer recht, und die Fehler und Irrtümer sind immer des Menschen." (Johann Wolfgang von Goethe)

Dieses Kapitel verdeutlicht,

- dass Hochwasser etwas Normales ist
- wie ein Hochwasser Fluss und Aue prägt.

Wasser und Fluss. Folie 1

Vor uns die Sintflut?

Juni 2013: Das Hochwasser an Donau und Elbe erreicht neue, bislang noch nie gemessene Rekordstände. Dabei liegen die letzten "Jahrhundertfluten" in Mitteleuropa noch nicht lange zurück: 2005 und 2009 an der Donau, 2002 und 2006 an der Elbe, 1997 an der Oder, 1995 am Rhein. Es scheint, als würden die Abstände zwischen den Hochwassern immer kürzer.

Dabei sind Hochwasser an sich nichts Ungewöhnliches. Es ist normal, dass ein Fluss mal weniger und mal mehr Wasser führt und dann über die Ufer tritt. Die Natur ist an Hochwasser angepasst. Zur Katastrophe wird es erst für den Menschen – wenn ganze Landstriche evakuiert werden

- oder die Auswirkungen minimieren?
- Ist in Zukunft mit stärkeren und häufigeren Hochwassern zu rechnen?

Was ist ein Hochwasser?

Ein Gewässer führt Hochwasser, wenn der Wasserstand deutlich über dem normalen oder mittleren Wasserstand liegt. Man unterscheidet Hochwasser an Meeresküsten, z. B. aufgrund von Sturmfluten, sowie Hochwasser an Flüssen und Bächen. Nur letztere sind Inhalt dieser Broschüre. Ausgelöst werden Hochwasser an Fließgewässern durch starke Regenfälle, manchmal auch durch Schneeschmelze oder Eisstau, z. T. wirken mehrere Faktoren zusammen. Manche Hochwasser treten regelmäßig auf, z. B. Frühjahrshochwasser infolge der Schneeschmelze.

Auch das Ausmaß der Hochwasserereignisse ist unterschiedlich, mit kleineren Hochwassern ist an einem Fluss öfter zu rechnen, sogenannte "Jahrhundertfluten" kommen – statistisch über einen längeren Zeitraum betrachtet – seltener vor. Dazu mehr in einem späteren Kapitel.

e e h là n n

Hochwasser: Die Natur kann damit leben – und der Mensch?

müssen, Ernten zerstört, Häuser, Siedlungen oder Verkehrswege überschwemmt oder gar Tote und Verletzte zu beklagen sind.

Nach jedem größeren Hochwasser – und besonders nach der scheinbaren Häufung der Ereignisse in jüngster Zeit – stellen sich die gleichen Fragen:

- Sind die Hochwasser hausgemacht, ist also letztlich der Mensch selber schuld?
- Können wir Hochwasser verhindern?
- Können wir uns vor Hochwasser schützen

Hochwasser gehört zum Fluss.

Wie oben erwähnt, führen Flüsse mal wenig, mal viel ... und manchmal auch sehr viel Wasser mit sich. Besonders in den flachen Tälern ihres Mittelund Unterlaufs treten Flüsse dabei immer wieder über die Ufer. Sie verlassen das eigentliche Flussbett und überschwemmen die angrenzenden Flächen. Dieser überflutete Talraum wird als Aue bezeichnet. Aue und Fluss gehören zusammen. Und eine Aue ist vom Wasser geprägt – genauer: vom Hochwasser (> Folie 1, Abb 1.1). Eine rezente Aue hat noch eine direkte Verbindung zum Fluss und kann von ihm überflutet werden. Eine ehemalige Aue oder Altaue ist durch Schutzbauwerke wie Deiche eigentlich vor Überschwemmungen geschützt was nicht heißt, dass sie bei außergewöhnlich hohem Hochwasser oder Versagen der Schutzanlagen nicht doch überflutet werden kann.

Hochwasser formt und verändert.

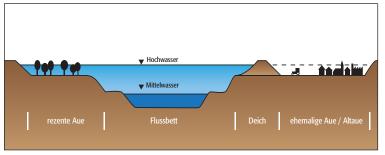
Wasser wirkt als Landschaftsgestalter. Sand, Erde und Steine werden an einer Stelle abgetragen und an anderer wieder abgelagert. Besonders nach einem Hochwasser. Dann kann ein Fluss plötzlich anders fließen als vorher, es bilden sich neue Flussschlingen. Im ehemaligen Flussbett bleiben Altarme und Altwasser, vom Hauptstrom abgeschnitten. Sie verlanden nach und nach – bis ein neues Hochwasser wieder alles durchströmt und neu modelliert. Eine Aue ist ständig in Bewegung, sie verändert laufend ihr Gesicht (S. 4 ff).

Hochwasser schafft Lebensräume.

Tiere und Pflanzen der Aue sind an diesen ständigen Wechsel zwischen trocken und nass angepasst. Dadurch liegen in einer Aue auch unterschied-

Typischer Auenbewohner: perfekt an den Lebensraum angenasst

lichste Lebensräume sehr eng beieinander: trockene Kies- und Sandbänke neben Feuchtflächen, Bereiche mit stehendem und fließendem Wasser, üppig wuchernde Wälder neben vom letzten Hochwasser entwurzelten Bäumen. Flussauen beherbergen damit auch außergewöhnlich artenreiche Ökosysteme, hervorzuheben sind hier die typischen flussbegleitenden Auwälder (S. 6 ff).


Hochwasser bringt fruchtbaren Boden.

Auen sind durch nährstoffreiche Böden, einen hohen Grundwasserstand und regelmäßige Überschwemmungen gekennzeichnet. Jedes Hochwasser lagert Sand, Schlick und Schlamm ab, der an anderer Stelle, v. a. im Oberlauf eines Flusses oder durch Einträge aus dem Umland, weggeschwemmt wurde. Dieser meist nährstoffreiche Schlamm ist der Grund, warum Auwälder nicht nur zu den artenreichsten, sondern auch den wuchskräftigsten Wäldern Mitteleuropas gehören. Und warum sie im Laufe der Geschichte oft anderen Nutzungen weichen mussten.

Aueböden sind fruchtbar und bestens für die Landwirtschaft geeignet, vorausgesetzt, man bekommt das Hochwasser in den Griff. Damit waren Auen auch immer bevorzugtes Siedlungsgebiet – zusammen mit den Vorteilen, die ein

Vom Wasser geprägt: Auwälder bei Hochwasser.

Wohnen am Fluss für Handel und Verkehr mit sich brachte. Die in den Flussauen so über Jahrhunderte aufgebauten Werte (Gebäude, Infrastruktur etc.) sind aber heute meist das Problem, wenn der Fluss über die Ufer tritt – und ein Naturereignis zur Katastrophe wird. Mehr dazu in den nachfolgenden Kapiteln.

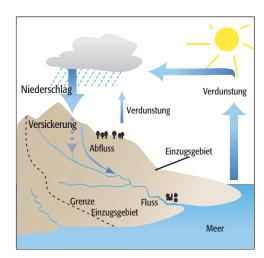
Fluss und Aue (Abb. 1.1): Bei Hochwasser wird der gesamte Talraum überschwemmt.


- Jeder Fluss führt mal weniger, mal mehr Wasser mit sich. Manchmal tritt er auch über seine Ufer.
- Bei Hochwasser überflutet der Fluss den angrenzenden Talraum, die Aue.
- Hochwasser formt, gestaltet und prägt die Aue. Tiere und Pflanzen sind daran angepasst. Da Auen besonders fruchtbar sind, waren sie schon immer bevorzugtes Siedlungsgebiet. Deshalb kann das "Naturereignis Hochwasser" für den Menschen zur Katastrophe werden.

Der natürliche Fluss.

Alles fließt. Vor allem unsere Bäche und Flüsse. Sie sammeln Wasser aus Quellen und Niederschlägen und führen sie über eine mehr oder weniger lange Reise bis ins Meer.

Dieses Kapitel erläutert,


- welche Rolle ein Fluss im Wasserkreislauf spielt
- wie ein Fluss von Natur aus fließt.

Fluss-Systeme. Folie 2

Ins Meer und wieder zurück.

Flüsse und Bäche sind Teil des Wasserkreislaufes (Folie 1, Abb. 1.2). Von den Niederschlägen, die über einer Landfläche abregnen, bleibt ein Teil an Pflanzen haften oder auf dem Boden liegen. Von dort verdunstet das Wasser. Oder es versickert im Erdboden und füllt den Grundwasserspeicher, bis das Wasser aus Quellen wieder zu Tage tritt. Ein Teil der Niederschläge fließt auch direkt oberflächlich ab. Dieses Wasser sammelt sich zusammen mit dem Quellwasser in Bächen und Flüssen und strömt schließlich dem Meer zu.

Wasserkreislauf (Abb. 1.2): Verdunstungswasser von Land- und Meeresflächen speist die Niederschläge. Flüsse sammeln das Niederschlagswasser und führen es Richtung Meer.

> Das Wasser, das über dem Meer und den Landoberflächen verdunstet, kondensiert zu Wolken und gelangt als Niederschlag wieder zurück zur Erde: ein immerwährender Kreislauf, angetrieben durch die Kraft der Sonne.

Flussabschnitte. Folie 3

Jeder Fluss hat ein Einzugsgebiet.

Jeder Bach, jeder Fluss sammelt – entwässert – das Wasser aus seinem Einzugsgebiet: über Zuflüsse, Oberflächenabfluss und den Grundwasserstrom. Das Einzugsgebiet ist definiert über Wasserscheiden, die höchsten Punkte im Gelände, von denen das Oberflächenwasser hinab in das

dazugehörige Fließgewässer fließt. Dabei kann sich das Grundwassereinzugsgebiet vom oberirdischen Einzugsgebiet durchaus unterscheiden.

Bäche transportieren das Wasser weiter in Flüsse, diese bilden Nebenflüsse von größeren Strömen, die ein ganzes Flusssystem mit einem entsprechend großen Einzugsgebiet bilden. Das Einzugsgebiet von großen Flüssen wie Rhein, Donau oder Elbe kann viele Tausend Quadratkilometer umfassen und sich über mehrere Länder erstrecken (Folie 2).

Je nach der Menge des anfallenden Wassers aus seinem Einzugsgebiet führt ein Fluss wenig, viel und im Extremfall auch sehr viel Wasser mit sich. Man spricht von Niedrigwasser, Mittelwasser (oder Normalwasser) und Hochwasser. Die Unterschiede zwischen Niedrig- und Hochwasser können je nach Fluss und auch je nach Flussabschnitt groß sein. Dazu zwei Beispiele: Der Wasserstand des Rheins bei Köln kann im Hochwasserfall über 7 m über dem Mittelwert liegen. Der Inn bei Passau transportiert gewöhnlich knapp 740 m³ Wasser pro Sekunde in die Donau, bei einem Extremhochwasser wurden aber schon 6.700 m³/s gemessen.

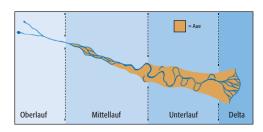
Von seiner Quelle bis zur Mündung durchläuft der Fluss verschiedene **Abschnitte**, die jeweils auch ein **charakteristisches Hochwasserverhalten** zeigen (Folie 3, Abb. 3.1):

Geballte Energie.

Im Oberlauf ist das Gefälle groß, der Gewässerverlauf gerade, das Bach-/Flussbett oft eingekerbt. Eine nennenswerte Aue gibt es nicht. Die angrenzenden Flächen des Einzugsgebietes fallen meist steil zum Gewässer ab. Dadurch sammelt sich Niederschlagswasser rasch an, die Fließgeschwindigkeit im Gewässer ist hoch, Steine und Erde werden mitgerissen. Der Fluss erodiert und gräbt sich dabei in den Untergrund ein (Tiefenerosion).

Das Einzugsgebiet ist meist klein und gebirgig. Kurze, aber sehr starke Regenfälle – z. B.

infolge eines heftigen Gewitters - können dem


In natura: Hier hat ein Hochwasser den Prallhang angerissen. Gegenüber Auflandungen am Gleithang.

Gewässer rasch erhebliche Wassermengen zutragen und kleine Rinnsale plötzlich in reißende Wildbäche verwandeln. Werden dabei die Seitenhänge angerissen, kann es zu Hangrutschungen und Murenabgängen kommen. Muren, ein Gemisch aus Wasser, Erde, Schutt, Geröll und Holz, bewegen sich dabei unterschiedlich schnell: manchmal langsam, manchmal aber mit Geschwindigkeiten bis zu 50 km/h. Verklausungen entstehen, wenn sich mitgerissene Baumstämme und Geröll an Engstellen verkeilen

Verklausungen entstehen, wenn sich mitgerissene Baumstämme und Geröll an Engstellen verkeilen und das Wasser kurzzeitig aufstauen. Bricht diese selbst geschaffene Barriere, können sehr große Wassermassen mit ungeheurer Energie zu Tal schießen und große Schäden anrichten.

Erosion und Sedimentation.

Im Mittellauf nehmen Fließgeschwindigkeit und Gefälle ab. Es bilden sich Seitenarme und Flussschlingen, der Fluss pendelt mehr oder minder stark durch eine Aue. Betrachtet man eine einzelne Flussschlinge, trägt der Fluss am außen liegenden Prallhang Material ab, er erodiert. Am innenliegenden Gleithang ist die Fließgeschwindigkeit geringer, der Fluss lässt Material zurück, sedimentiert (Folie 3, Abb. 3.2). Bei Hochwasser verlässt das Wasser das Flussbett und sucht sich seinen Weg durch die angrenzende Aue. Dabei entstehen im natürlichen Fluss immer wieder neue Flussschlingen. Seitenarme verschieben sich, Uferbereiche werden angerissen, das abgeschwemmte Material vom Hochwasser an anderer Stelle zu sogenannten Brennen aufgeschoben.

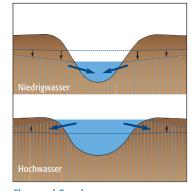
Breit und gemächlich.

Im Unterlauf bzw. in den Tieflandbächen/-flüssen sind Gefälle und Fließgeschwindigkeit deutlich reduziert. Anfangs halten sich Erosion und Sedimentation die Waage, bei weiter abnehmendem Gefälle wird fast nur noch sedimentiert, d. h. Material abgelagert. Der Strom bildet weite Flussschlingen, so genannte Mäander. Bei Hochwasser tritt der Fluss oft weiträumig über die Ufer und überschwemmt eine meist breite Aue, z. T. kann der Fluss dabei auf mehrere Kilometer ausufern. Bei nachlassendem Hochwasser verbleibt viel Material wie Sand, Schlamm und Schlick in der Aue, die natürlichen Auwälder am Fluss gedeihen dadurch prächtig.

Bei der Einmündung ins Meer – oder auch einen großen See – lagert der Fluss die mitgeführten Sedimente ab, im Mündungsbereich bildet sich oft ein **Delta**. In der Nordsee entstehen aufgrund des großen Tidenhubs durch die Gezeiten **Trichtermündungen**, so z. B. bei Ems, Weser und Elbe.

Unterirdisch verbunden.

Flüsse und Bäche sind im Untergrund mit dem Grundwasser verbunden, im angrenzenden Auenbereich ist dadurch der Wasserstand relativ hoch. Bei länger andauerndem Niedrigwasser sinkt in der Aue auch der Grundwasserstand. Umgekehrt steigt bei längerem Hochwasserstand der Grundwasserspiegel in der Aue an. In der Folge werden manche Bereiche der Aue u. U. auch nicht durch den ausufernden Fluss unter Wasser gesetzt, sondern von unten durch hochdrückendes Grundwasser. Das geschieht oft zeitversetzt, d. h. das Hochwasser kann schon abgelaufen sein, während das Grundwasser noch steigt (Folie 3, Abb. 3.3).


Von der Quelle zur Mündung (Abb. 3.1): Eine ausgeprägte Aue hat der Fluss erst ab dem Mittellauf.

Prall- und Gleithang (Abb. 3.2): Erosion in der Außenkurve, Sedimentation auf der Kurveninnenseite.

Schiebt sich immer weiter in den Chiemsee: das Mündungsdelta der Tiroler Ache.

Fluss- und Grundwasser (Abb. 3.3): Der Grundwasserspiegel reagiert zeitversetzt auf ein Hochwasser.

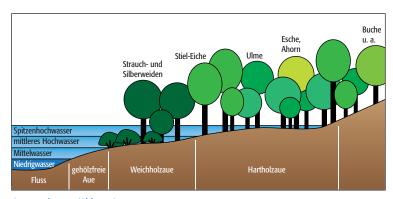
- Jeder Fluss entwässert ein zu ihm gehörendes Einzugsgebiet. Dabei bilden sich aus Zu-, Nebenund Hauptflüssen große Flusssysteme, deren Einzugsgebiete mehrere Tausend Quadratkilometer umfassen können.
- Ein Fluss durchläuft von der Quelle zur Mündung verschiedene Abschnitte mit bestimmten Charakteristika und einem entsprechenden Hochwasserverhalten. Mal wird dabei mehr Material abgetragen (erodiert), mal eher Material angeschwemmt (sedimentiert).
- Auch das Grundwasser ist mit dem Fluss verbunden. Es steigt und sinkt mit dem Hochwasser, allerdings zeitversetzt.

Fluss und Aue.

Intakte Auwälder haben etwas Urwaldartiges: mächtige, alte Bäume, umrankt von Kletterpflanzen, überall üppiges Wachstum, geheimnisvolle, versteckt lebende Bewohner. Und manchmal steht alles im Wasser.

Dieses Kapitel zeigt

- die verschiedenen Bereiche (Zonen) innerhalb einer Aue
- typische Tiere und Pflanzen der Aue
- die Bedeutung von Auen im Naturhaushalt und ihren aktuellen Zustand.


Leben in der Aue

Im Rhythmus des Wassers.

Die flussbegleitende Aue mit ihrer Tier- und Pflanzenwelt ist vom ständigen Wechsel schwankender Wasserstände geprägt. Hochwasser zerstört dabei Lebensräume und schafft zugleich neue. Für das einzelne Individuum, ein Tier oder eine Pflanze, kann ein Hochwasser dabei eine todbringende Katastrophe sein. Nach dem Hochwasser werden die neu gestalteten Lebensräume aber schnell wieder besiedelt, Tiere und Pflanzen der Aue sind genau darauf spezialisiert.

So weit das Wasser reicht.

Je nachdem, wie oft, wie hoch und wie lange das Wasser im Jahresverlauf in der Aue steht, wachsen dort jeweils charakteristische

Auenzonierung (Abb. 4.1): Das Hochwasser bestimmt, was wo wächst.

Hartholzauwald.

Pflanzengesellschaften. Die Übergänge zwischen den verschiedenen Bereichen, den Auenzonen, sind aber fließend (Folie 4, Abb. 4.1).

Unmittelbar am Fluss, bis zur Höhe des mittleren Sommerwassers, findet sich die **gehölzfreie Aue**. Da sie nur bei Niedrigwasser aus dem Wasser ragt, können sich wegen der mechanischen Kräfte des Wassers und des häufigen Sauerstoffmangels keine Sträucher und Bäume halten. Auf den flussnächsten Flächen findet man einjährige Kräuter (z. B. Barbarakrautfluren), daran anschließend meist eine Zone mit Röhricht (Schilf u. a.).

Im Bereich des mittleren Hochwassers, also einer Zone, die regelmäßig und auch längere Zeit überflutet wird, folgt die **Weichholzaue**. Sie bildet in der Regel einen relativ schmalen Saum entlang der Flüsse

Hier wachsen vor allem Weiden, z. B. die Silberweide, aber auch verschiedene strauchartige Weidenarten. Sie überstehen Überflutungen bis zu 4 m Höhe und einer Dauer von über 200 Tagen pro Jahr. Auch mechanische Belastungen durch eine starke Wasserströmung vertragen Weiden sehr gut. Ihre Zweige sind extrem elastisch. Brechen Stammteile ab, kann die Weide schnell wieder ausschlagen, abgebrochene Teile wurzeln neu. Mit ihren Zweigen kämmen sie Feinteile aus dem Wasser und schaffen sich so ihr eigenes Bodensubstrat. In ihren Wurzeln haben sie spezielle Luftzellen, sodass sie auch unter der Wasserlinie wurzeln können.

Den größten Teil der Aue umfasst meist die Hartholzaue. Sie liegt höher und wird nur noch unregelmäßig vom Hochwasser erreicht. Die Zeitdauer der Überflutung ist kürzer, im Mittel 20-50 Tage pro Jahr, die Strömung deutlich geringer. Dadurch kann das Hochwasser viele Schwebstoffe absetzen, die Böden sind nährstoffreich, das Pflanzenwachstum entsprechend üppig. Hartholzauwälder zeichnen sich durch eine reiche Kraut- und Strauchschicht und meist mehrere Baumschichten aus. Hier wachsen Sträucher wie Weißdorn und Pfaffenhütchen sowie die Wildformen von Apfel und Birne, Kletterpflanzen wie Efeu, Hopfen und Waldrebe umschlingen die Bäume. In der Baumschicht dominieren Harthölzer wie Stieleiche und Esche, begleitet von Flatter- und Feldulme sowie Berg- und Spitzahorn. Die Stieleiche verträgt Überschwemmungen bis zu 100 Tagen, wächst also eher im flussnäheren Teil der Hartholzaue. Weiter oben dominiert die Esche, die nur eine Überflutungstoleranz von 40 Tagen während der Vegetationszeit hat. Die in Deutschland von Natur aus allgegenwärtige Buche fehlt in der Hartholzaue, da sie Überschwemmungen – auch kurzzeitige – nicht verträgt.

Hartholzauwälder zählen zu den wuchskräftigsten und artenreichsten Wäldern in Mitteleuropa. Durch Flussregulierungen, Grundwasserabsenkungen und Umwandlung in landwirtschaftliche Flächen sind naturnahe, noch regelmäßig vom Hochwasser beeinflusste Hartholzauwälder heute in Deutschland aber sehr selten geworden. Man geht von nur noch 1% des ursprünglichen Bestandes aus.

Leben zwischen Wasser und Land.

Die Tier- und Pflanzenwelt der Aue ist perfekt an die ständig wechselnden Wasserstände angepasst. Einige Beispiele (Folie 4, Abb. 4.2):

Die **Silberweide** verträgt lange Überflutungen und trotzt auch der mechanischen Energie des strömenden Wassers. Ihre Regenerationskraft bei Verletzungen ist erstaunlich. Der Baum selbst

Silberweide: enorme Regenerationskraft.

wird nur maximal 80 Jahre alt, aber selbst aus der Wurzel oder umgestürzten Stämmen können neue Triebe ausschlagen und ein neuer Baum wachsen. Der Same der Silberweide ist extrem klein und leicht, er wird durch die Luft verbreitet. Zum Keimen braucht er besondere Bedingungen, v. a. feuchten, vegetationslosen Boden wie z. B. unmittelbar nach einem Hochwasser. Da sich diese Bedingungen nicht jedes Jahr ergeben, sind natürlich begründete Silberweidenwälder meist gleich alt.

Die Regenerationskraft der Weide wurde jahrhundertelang genutzt, indem die Silberweide als Kopfweide regelmäßig geschnitten wurde. Die armdicken Äste fanden Verwendung als Brennholz, für Reb- und Zaunpfähle oder zur Uferbefestigung, die dünneren Zweige zum Flechten. Da alte Kopfweiden häufig innen hohl

sind, bieten sie optimale Verstecke für Höhlenbewohner wie Waldkauz und Fledermaus. Deshalb ist es wichtig, dass Kopfweiden weiter genutzt werden, da die Äste sonst durchwachsen und die Bäume auseinanderbrechen.

Der Schlammling ist eine kleine krautige Pflanze, die auf vegetationsfreien Flächen siedelt, die bei niedrigem Wasserstand aus dem Wasser auftauchen. Die Pflanze bildet schnell Samen, der vom Wasser verdriftet wird und sich im Schlamm ablagert. Fällt der Schlamm irgendwann trocken, keimen die Samen und ein neuer Schlammling wächst heran

Alte Hartholzauwälder mit einem hohen Anteil an totem Holz sind ein wahres Paradies z. B. für Spechte und Fledermäuse. Beeindruckend auch die Insektenwelt, hier sind viele seltene Käferarten auf Totholz spezialisiert, wie der Heldbock oder der Eremit.

Auen sind auch durch eine reiche Vogelwelt gekennzeichnet. Neben vielen auch in der Umgebung häufigen Arten sind Höhlenbewohner und vor allem die zahlreichen Sumpf- und Wasservögel zu nennen.

Der **Eisvogel** gräbt seine Brutröhre ca. 80 cm tief in lehmige Uferböschungen. Solche Uferanbrüche entstehen am natürlichen Fluss immer wieder neu nach Hochwassern.

Der Flussuferläufer sucht mit seinem langen, dünnen Schnabel im Uferschlamm nach Würmern und Insekten, ein typischer Watvogel der Flussauen. Kiesbänke im Fluss sind begehrte Brutplätze für Flussseeschwalben oder den Flussregenpfeifer.

Der **Biber** ist ein typischer Vertreter der Flussauen, der die Aue selbst aktiv umgestaltet und so zur Renaturierung und Belebung von Flussauen beiträgt.

Altarme und Altwasser gelten als **Kinderstube für Fische**. In intakten Flussauen wie etwa am Altrhein bei Stockstadt können über 40 verschiedene Fischarten gezählt werden.

Im und am Gewässer finden sich auch zahlreiche Insektenarten: Wasserkäfer, Libellen und Schmetterlinge. Manche Arten sind auf bestimmte Futterpflanzen in der Aue angewiesen. Oft leben die Larven im Wasser, die fertigen Tiere suchen dann aber die Uferbereiche an Land auf.

Ein besonderer Lebensraum ist die Aue auch für Amphibien, die perfekt an den Wechsel zwischen nass und trocken angepasst sind. Auch hier

Schlammling: keimt bei Niedrigwasser.

Eremit: ein typischer Alt- und Totholzbewohner im Auwald.

Eisvogel: gräbt seine Brutröhre in vom Hochwasser angerissene Ufer

Libelle: lebt an ruhigen Altarmen des Flusses.

Wechselkröte: laicht in Hochwassertümpeln.

Kiemenfußkrebs (Triops): Seine Eier überdauern jahrelang im Bodenschlamm.

Extrem artenreich, aber selten: intakte Auwälder, die noch vom Fluss überschwemmt werden. erfolgen Eiablage und Larvenstadium im Wasser, die übrige Zeit verbringen die Tiere meist an Land.

Der Kammmolch z. B. laicht in krautreichen Altwassern und lebt den Rest des Jahres im Auwald.

Die Wechselkröte sucht im Frühjahr vegetationslose, flache Tümpel zum Laichen auf, wie sie nach einem Hochwasser entstehen. In solchen Tümpeln sind Laich und Larven vor Fressfeinden wie Fischen geschützt. Die Tümpel trocknen später im Laufe des Sommers aus, so dass sich keine Fischfauna entwickeln kann.

Ein Auenspezialist ist auch der Kiemenfußkrebs der Gattung Triops. Seine Eier können mehrere Jahrzehnte im Boden "ruhen". Wird der Boden überflutet, schlüpfen die Larven innerhalb von 48 Stunden und entwickeln sich in ein bis zwei Wochen zum fertigen Krebs. Der Krebs selbst lebt nur etwa drei Monate, bis dahin ist das Wasser längst verschwunden.

In der Flussaue zuhause ist die Auwaldmücke, in der Rheinebene als "Rheinschnake" gefürchtet. Sie legt ihre Eier auf Flächen außerhalb des Wassers, aber noch dort, wo sie von Hochwasser erreicht werden. Dort können sie ebenfalls mehrere Jahre überdauern, bis sie von einem Hochwasser "geweckt" werden. Ist es dann warm und feucht, entwickeln sich die Mücken millionenfach und schwärmen aus. Die Larven schlüpfen dabei nur ab einer bestimmten Temperatur, dadurch wird ein Ausschlüpfen etwa nach einem Winterhochwasser ausgeschlossen.

Faszination Aue.

Die Bedeutung von Auen für den Naturhaushalt, aber auch für den Menschen, ist hoch. Auen sind ...

- Lebensraum für viele Tiere und Pflanzen
- Wasserrückhalt und natürlicher Hochwasserschutz
- ein natürliches Klärwerk für das Gewässer
- Erholungsraum für den Menschen.

Wertvoller Lebensraum.

Auwälder gehören zu den artenreichsten Ökosystemen in Mitteleuropa. Auch die anstelle der Wälder in vielen Auen entstandenen extensiv genutzten Auwiesen gelten heute als wertvolle Lebensräume für speziell angepasste Arten, insbesondere Insekten (Schmetterlinge). Auen sind Rückzugsräume für viele seltene und europaweit bedrohte Arten. Als bandförmige Strukturen entlang der Bäche und Flüsse haben Auen eine wichtige Funktion in der Biotopvernetzung.

Hochwasserbremse.

Auen können im Hochwasserfall Wasser aufnehmen und zurückhalten und damit ein Hochwasser entschärfen. Sie sind natürliche Wasserrückhaltesysteme, sogenannte Retentionsräume. Auwälder bremsen durch ihren dichten Bewuchs das Hochwasser und lassen Wasser versickern bzw. geben es verzögert weiter.

Flussklärwerk.

Auwälder und Röhrichte filtern das Wasser und tragen zur Selbstreinigung des Flusses bei. Der

Durchatmen: Auwälder sind in den dicht besiedelten Flussauen echte Naturoasen.

Auenboden reinigt das Wasser auf dem Weg ins Grundwasser. Eine wichtige Leistung, da z. T. auch Trinkwasser für die Bevölkerung aus flussnahen Bodenschichten und damit indirekt aus dem Fluss entnommen wird, so z. B. am Rhein.

Erholungsgebiet.

Unsere Flussebenen sind überwiegend dicht besiedelt. Siedlungen, Gewerbegebiete und Industrieanlagen sowie landwirtschaftlich genutzte Flächen begleiten die großen Flüsse in Mitteleuropa. Umso wichtiger sind intakte Flussauen mit naturnahen Auwäldern als Erholungsraum für den Menschen. Alte Auwälder mit imposanten, mächtigen Eichen und 40 m hohen Eschen, umrankt von Efeu und Waldrebe, haben eine besondere Ausstrahlung.

Wo sind sie geblieben ...

Der Auenzustandsbericht des Bundesamtes für Naturschutz gibt einen Überblick über die aktuelle Situation der Auen in Deutschland. Demnach

kann derzeit **nur noch ein Drittel** der ehemaligen Überschwemmungsflächen bei großen Hochwassern überflutet werden. An vielen Abschnitten von Rhein, Elbe, Donau oder Oder sind es nur noch 10–20%.

In der 5-stufigen Bewertungsskala zum Auenzustand gelten von den rezenten, also aktuell noch überflutbaren Flussauen nur 1% als sehr gering, 9% als gering verändert. Deutlich verändert (Klasse 3) sind 36%, die restlichen 54% verteilen sich auf die Klassen 4 (stark verändert) und 5 (sehr stark verändert).

Über ein Drittel der rezenten Auen sind intensiv als Acker-, Siedlungs-, Verkehrs- und Gewerbe-flächen genutzt, nur 13% sind Wälder, wobei der größte Teil davon keinen Auwaldcharakter mehr hat. Nur noch ca. 57 km² können bundesweit als naturnahe Hartholzauwälder bezeichnet werden – ein Waldtyp, der ursprünglich überall entlang der großen Flüsse wuchs.

Beim Grünland ist der überwiegende Teil intensiv genutzt, extensiv genutztes Feuchtgrünland ist kaum mehr vertreten, auch Feuchtgebiete kommen nur noch auf 2% der rezenten Aue vor (Folie 5).

Der Auenzustandsbericht stellt fest: Viele Auen sind intensiv genutzt und können ihre Funktion kaum mehr erfüllen.

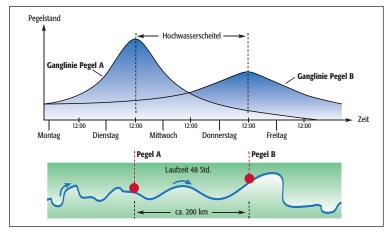
Flussauen in Deutschland. Folie 5

- Die Aue weist bedingt durch Höhe, Dauer und Häufigkeit von Hochwassern eine charakteristische Zonierung auf.
- An den ständigen Wechsel zwischen Hoch- und Niedrigwasser sind zahlreiche Tier- und Pflanzenarten angepasst. Auen zählen dabei zu den artenreichsten Ökosystemen in Mitteleuropa, besonders gilt das für die Auwälder.
- Intakte Flussauen üben wichtige Funktionen im Naturhaushalt aus. Sie bieten Lebensraum, sie bremsen Hochwasser und reinigen den Fluss. Und sie sind wichtige Erholungsgebiete für den Menschen.
- Naturnahe Auen sind an unseren Flüssen heute selten, die Talräume werden vielfach intensiv genutzt. Von den einst weitverbreiteten Auwäldern sind nur noch isolierte Restflächen verblieben.

Wie ein Hochwasser entsteht.

Auslöser von heftigen Hochwassern sind fast immer sintflutartige Regenfälle. Wie stark ein Hochwasser ausfällt, bestimmen noch andere Faktoren. Und an manchen "Schrauben" dreht auch der Mensch …

Dieses Kapitel informiert über


- die Ursachen von Hochwasser
- Faktoren, die Ausmaß und Verlauf eines Hochwassers beeinflussen.

Hochwasserfaktoren I. Folie 6

Mehr Wasser als normal.

An allen größeren Fließgewässern in Europa werden heute die Wasserstände an Pegeln regelmäßig gemessen und kontrolliert. Aneinandergereiht ergeben die einzelnen Messwerte für jeden Pegel eine Ganglinie des Wasserstandes, an der sich Veränderungen gut ablesen lassen. Im Hochwasserfall ist diese Ganglinie sehr ausgeprägt und macht sich als Hochwasserwelle bemerkbar, der Wasserstand steigt über Tage oder Stunden bis zu einem Hochwasserscheitel und fällt danach wieder mehr oder minder

Hochwasserwelle (Abb. 6.1): Pegelmessungen an verschiedenen Orten dokumentieren Höhe und Laufzeit der Walle

Dauerregen lässt Flüsse über die Ufer treten.

schnell ab (Folie 6, Abb. 6.1). Je nach Verlauf eines Hochwassers gibt es flache und steile Wellen. Über kontinuierliche Messungen an verschiedenen Pegeln entlang des Flusslaufes lässt sich auch die Laufzeit einer Welle bestimmen, was Vorhersagen über den weiteren Hochwasserverlauf ermöglicht.

Auslöser von Hochwasser sind fast immer starke Niederschläge oder die Schneeschmelze. Ob daraus nur leichte Überschwemmungen oder eine Hochwasserkatastrophe werden, hängt von unterschiedlichen **Faktoren** ab:

- Dauer und Intensität des Niederschlags
- Form und Gestalt des Einzugsgebietes
- Bodenbeschaffenheit
- Vegetation und Nutzung
- Gewässerzustand/-ausbau

Niederschlag lässt das Fass überlaufen.

Der wichtigste Faktor für die Entstehung von Hochwasser sind **Niederschläge**. Dabei ist Regen nicht gleich Regen:

Konvektive Niederschläge oder Starkregen sind meist von Gewittern begleitet und liefern hohe Niederschlagsmengen in kurzer Zeit auf sehr begrenzter Fläche. Im Extremfall sind 100 1/m² in einer Stunde möglich, oft regnet es wenige Kilometer entfernt gar nicht. Diese Niederschläge können kleine, unscheinbare Bäche innerhalb von Minuten in reißende Ströme verwandeln und Sturzfluten mit großer Zerstörungskraft auslösen, die sich auch kaum vorhersagen lassen. Auf die Pegelstände großer Flüsse haben solche kleinräumigen Starkregenfälle keinen nennenswerten Einfluss. Die Gefahr für ein wirklich schweres Hochwasser an einem großen Fluss ist erst bei hohen Niederschlagsmengen gegeben, die langanhaltend und großflächig abregnen. Dann ist der Boden irgendwann wassergesättigt, das Wasser aus einem großen Einzugsgebiet sammelt sich über viele Zuflüsse und kann vom Flussbett nicht mehr aufgenommen werden. Auch das Zusammentreffen von Dauerregen und Schneeschmelze kann zu hohen Pegelständen führen.



Außergewöhnlich viel Niederschlag

Beim Oderhochwasser im Sommer 1997 fiel innerhalb von drei Wochen die sonst in einem halben Jahr übliche Regenmenge. Im Süden Polens und im Osten Tschechiens wurden im Bergland innerhalb weniger Tage sogar mehr als die vier- bis fünffache Menge eines "normalen" Juli registriert.

Im Wechsel der Jahreszeiten.

Im Sommer sind sogenannte **Vb-Wetterlagen** (sprich: Fünf-B) oft für besonders dramatische Hochwasserereignisse verantwortlich (Folie 6, Abb. 6.2). Auslöser dieser eher seltenen

Vb-Wetterlage (Abb. 6.2): besonders niederschlagsträchtig.

Großwetterlage ist ein starkes Tiefdruckgebiet über dem westlichen Mittelmeer, das an seiner östlichen Seite feuchtwarme Luft nach Mitteleuropa schaufelt. Dort gleitet diese auf bodennahe Kaltluft, Ergebnis sind ergiebige, manchmal über Tage andauernde Regenfälle. Im ungünstigsten Fall wird die Luft gegen die Nordränder der Alpen bzw. der Mittelgebirge gedrückt, was die Regenmengen dort zusätzlich intensiviert.

Im Winter sind Niederschläge zunächst in Form von **Schnee** gespeichert. Bei einem plötzlichen Temperaturanstieg entsteht dann allerdings viel Schmelzwasser. Zusätzliche, ergiebige Regenfälle, die z. T. noch auf gefrorenen Boden auftreffen, können dann schnell zu einer kritischen Hochwassersituation führen.

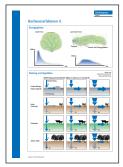
In den Mittelgebirgen mit vergleichsweise geringer Schneebedeckung kann plötzlich eintretendes Tauwetter mitten im Winter große Gebiete erfassen und zu hohen Abflusswerten führen (Winterhochwasser). In den Alpen setzt dagegen das Tauwetter nur langsam ein. Gefahr besteht an den Alpenflüssen v. a. im Frühsommer, wenn Dauerregen den Restschneemengen in den Hochlagen zusetzt und neben dem Regen viel Schmelzwasser anfällt.

Hochwasser entsteht auch durch Eisstau: Auf dem Wasser treibende Eisschollen verkeilen sich an Engstellen im Fluss oder an Brückenpfeilern und behindern den Abfluss. Beim Durchbrechen der Eisbarriere (Eisstoß) kann es dann zu einer sehr hohen und steilen Hochwasserwelle kommen.

Was macht der Klimawandel mit dem Regen?

Niederschlag galt bislang als natürlicher, vom Menschen nicht beeinflussbarer Hochwasserfaktor. Im Zuge des Klimawandels rechnen Wissenschaftler für Mitteleuropa aber mit einer Erhöhung der Niederschlagsmengen insgesamt und mit Veränderungen im Niederschlagsgeschehen. Beides deutet auf eine Verstärkung der Hochwassergefahr hin.

Wassersammler - das Einzugsgebiet.


Jeder Bach, jeder Fluss hat ein Einzugsgebiet, aus dem er sein Wasser bezieht. Große Flusssysteme setzen sich aus den Einzugsgebieten aller Zu- und Nebenflüsse zusammen.

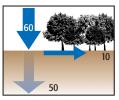
Größe, Form und Geländerelief des Einzugsgebietes haben Einfluss auf die Abflussbildung und damit auf Stärke und Ablauf eines Hochwassers (Folie 7, Abb. 7.1). Bei großem Gefälle und kurzen Wegen strömt das Wasser schnell zusammen. Bei runden Einzugsgebieten trifft das abfließende Wasser zudem aus allen Teilen des Gebietes gleichzeitig zusammen. Daraus ergibt sich eine kurze, aber sehr steile Hochwasserwelle. In langgezogenen Einzugsgebieten entstehen dagegen lange, aber flachere Abflusswellen. Zu einer Wellenüberlagerung kommt es, wenn die Wellen zweier Zuflüsse aufeinandertreffen.

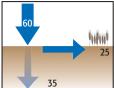
Problematisch ist auch das Zusammentreffen der Hochwasserwellen eines Haupt- und eines Nebenflusses: Der Nebenfluss kann sich dann gefährlich zurückstauen.

Ein natürlicher Schwamm – der Boden.

Wie viel vom Niederschlag in welcher Zeit versickert und wie viel abfließt, hängt auch von den Eigenschaften des Bodens ab. Wie bei einem Schwamm dringt das Wasser in die Bodenhohlräume. Erst wenn dieser Schwamm

Hochwasserfaktoren II. Folie 7


Einzugsgebiete (Abb. 7.1): Größe, Form und Relief beeinflussen ein Hochwasser.



Wassergesättigt: Dieser Boden kann kein Wasser mehr aufnehmen.

voll ist, fließt das Wasser vollständig oberirdisch ab. Messbar ist die Versickerung über die Infiltrationsrate (z. B. $1/m^2$ pro Stunde). Kies und Sand können in ihren großen, vielfach verbundenen Poren schnell und viel Wasser aufnehmen. Auch lockerer, humoser Waldboden ist meist sehr aufnahmefähig. Tonböden wirken dagegen wie eine Stauschicht.

Nach tagelangem Dauerregen ist allerdings jeder Boden wassergesättigt. Gleiches gilt bei gefrorenem Boden. Dann verhält sich der Boden

Niederschlag und oberirdischer Abfluss (Abb. 7.2): Im Wald versickert viel, auf Ackerfächen fließt viel ab.

wie eine Betonfläche – alles fließt ab. Bei großräumigen und langanhaltenden Niederschlägen, die Einzugsgebiete ganzer Flusssysteme abdecken, spielt deshalb der Faktor Boden ab einem bestimmten Zeitpunkt keine Rolle mehr.

Extreme Bodenfeuchte

Beim Junihochwasser 2013 waren aufgrund eines ungewöhnlich nassen Mai schon im Vorfeld 40% der Böden in Deutschland extrem feucht. Die dann einsetzenden ergiebigen Niederschläge ließen schnell große Wassermengen oberflächlich ablaufen – der Bodenschwamm war voll!

Eine Schutzdecke – die Vegetation.

Wer sich bei beginnendem Regen unter einen Baum stellt, kennt den Effekt: Der Regen bleibt zuerst an den Blättern hängen, bevor er den Boden erreicht. Ein Wald kann so bis zu 5 1/m² im "Tropfenkleid" festhalten, eine Wiese bis zu 2 1/m². Zudem lockert Bewuchs den Boden, Wasser kann besser versickern.

So liegt die Infiltrationrate bei Wald im Durchschnitt bei bis zu 60–75 1/m² pro Stunde. Ein Niederschlag von 20 1/m² wird komplett aufgenommen, selbst bei einem Niederschlag von 100 1/m² fließen nur ca. 35 1 ab. Bei einer Viehweide sind es schon 50 1, bei einem Acker mit Getreide ca. 60 1 Abfluss (Folie 7, Abb. 7.2).

Versiegelt: Hier kann kein Wasser versickern.

Einfluss mit Einfluss – die Nutzung.

Die Landfläche Mitteleuropas ist dicht besiedelt und in weiten Teilen intensiv genutzt. Damit nimmt der Mensch auch Einfluss auf das Hochwassergeschehen. Wie dargestellt, reduzieren Wälder den Oberflächenabfluss deutlich, Ackerflächen weniger. Besonders negativ wirkt sich z. B. Maisanbau aus, weil die Maispflanzen erst spät aufwachsen und der Boden gerade während der Starkniederschläge im Frühsommer kaum geschützt ist. Viele Ackerböden sind auch durch Bodenbearbeitung mit schweren Maschinen stark verdichtet, sodass sie wenig Regenwasser aufnehmen können. Und viele Böden sind inzwischen auch überbaut:

Siedlungs- und Verkehrsflächen machen in Deutschland 13% der gesamten Staatsfläche aus, wobei etwa die Hälfte davon tatsächlich versiegelt ist. Diese Flächen, also etwa 5-6%, sind wasserundurchlässig, bei Regen fließt das Wasser ungebremst ab. Und der Bedarf steigt weiter: Zwischen 2006 und 2009 wurden in Deutschland täglich 43 ha (= 61 Fußballfelder) versiegelt.

Anderseits kann auf knapp 95% der Landesfläche das Wasser noch mehr oder minder gut versickern. Trotzdem: In kleinen Einzugsgebieten, zumal wenn sie dicht besiedelt sind, hat der **Versiegelungsgrad** bei kurzzeitigen Starkregenereignissen sowie bei kleineren Hochwassern durchaus Einfluss. Untersuchungen an Flussmodellen haben dies dokumentiert: Die Spitzenabflüsse von kleinen und häufigen Hochwassern sind heute um 40–60% höher als früher, die Hochwasserwellen steiler, aber auch kürzer.

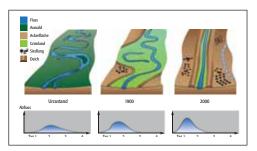
Bei großen Hochwassern, die ganze Flusssysteme betreffen, darf der Einfluss der Versiegelung allerdings nicht überbewertet werden, zumal nach langanhaltenden Regenfällen oder Frost der Boden ohnehin nicht mehr wasseraufnahmefähig ist. Dann ist es egal, ob er künstlich oder natürlich versiegelt ist.

Zu nah am Fluss.

Schon immer siedelten die Menschen an Flüssen. Das brachte Vorteile, denn Flüsse waren Verkehrs- und Handelswege. Man rodetete Auwälder, legte Felder an und schützte die Siedlungen durch Deiche. Die Folge: Bei Hochwasser hat der Fluss immer weniger Raum, sich in seiner Aue auszubreiten. Erst bei einem Deichbruch flutet er den ursprünglichen Talraum und überschwemmt alles, was dort inzwischen gebaut und geschaffen wurde.

Die alten Siedlungskerne liegen dabei an vielen Flüssen oft außerhalb der stark von Hochwasser betroffenen Bereiche. Erst später im Mittelalter wurden tiefer liegende oder flussnahe Bereiche besiedelt. Ab dem 19. und besonders dann im 20. Jahrhundert setzte eine intensive Bautätigkeit in der Aue ein, die auf die Hochwassergefahr oft wenig Rücksicht nahm. Der Bau von Siedlungen, Industrieanlagen oder Infrastruktureinrichtungen führt dabei in überflutungsgefährdeten Bereichen zu einer starken Konzentration von Werten. Ein weiteres Problem: Kommt es längere Zeit nicht zu einem großen Hochwasser, geht auch das Gespür für die Gefahr am Fluss verloren und die Bevölkerung fühlt sich im Schutz der Deiche in Sicherheit. Ieder Deich kann diese aber nur bis zu einem gewissem Grad garantieren.

Nah am Fluss: Bei Hochwasser sind die Keller voll.


Flüsse im Korsett – Gewässerausbau.

Unsere Flüsse und Bäche sind heute in weiten Teilen vom Menschen geformt. An den großen Strömen wie Rhein oder Elbe begann der Ausbau schon vor 200 Jahren, v. a. nach dem 2. Weltkrieg wurden auch kleinere Gewässer in großer Zahl umgestaltet – begradigt, kanalisiert, verrohrt. Auf Entstehung und Verlauf eines Hochwassers haben viele dieser Maßnahmen erheblichen Einfluss (Folie 8, Abb. 8.1).

Die ersten bedeutenden Regulierungen Anfang des 19. Jahrhunderts hatten zunächst folgende

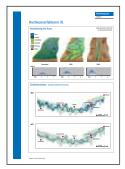
- Verbesserung der Schiffbarkeit und Flößerei durch breitere, tiefere und vor allem beständigere Fahrrinnen.
- Besserer Hochwasserschutz der Talräume
- Absenkung des Grundwasserstandes zur besseren landwirtschaftlichen Nutzung der Aue.

Um diese Ziele zu erreichen, wurden die Ufer befestigt, der Fluss begradigt, Flussschlingen und Seitenarme abgetrennt. Zusätzlich wurden

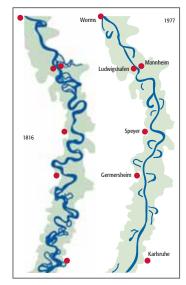
Veränderung der Auen (Abb. 8.1): Der Flussverlauf wird begradigt, Äcker und Siedlungen verdrängen den ursprünglichen Auwald

Staustufen gebaut, um die Schiffbarkeit ganzjährig zu gewährleisten, später auch um Strom zu gewinnen. Die Deiche zum Schutz der Talräume wurden teilweise sehr nah an die Flüsse herangezogen, um möglichst große hochwasserfreie Flächen zu schaffen (Folie 8, Abb. 8.2).

Diese Maßnahmen hatte aber Folgen, die so zunächst nicht bedacht worden waren und oft weitere Eingriffe notwendig machten bzw. machen: Die Begradigung und Verkürzung der Fluss- und Bachläufe erhöht die Abflussgeschwindigkeit. Die Wassermengen der Zuflüsse werden so beschleunigt im Flusssystem gesammelt, Hochwasserwellen durchlaufen den Fluss schneller und ausgeprägter. Im ungünstigsten Fall treffen die Wellen von Haupt- und Nebenfluss direkt aufeinander und überlagern sich. Zudem verringert die beschleunigte Ableitung zwar die Hochwassergefahr beim Oberlieger des Flusses, verstärkt sie aber für die Unterlieger und verlagert sie so nur. Und: Je weniger Platz ein Fluss hat, bei Hochwasser auszuufern, desto höher und schneller wird die Hochwasserwelle. Die Flussbaumaßnahmen haben die Überschwemmungsflächen entlang der Flüsse drastisch reduziert, die Flüsse wurden vielfach von ihrer Aue getrennt.



Gewässerausbau


Die erste großräumige Flusskorrektur am Oberrhein begann 1817, später folgten weitere. Zwischen Basel und Karlsruhe wurde der Flusslauf um rund 80 km verkürzt. Die Überschwemmungsfläche schrumpfte von ca. 1.000 km² auf nur noch 130 km². Die Laufzeit der Hochwasserwelle zwischen beiden Städten hat sich halbiert. Das Hochwasser aus dem Oberrhein überlagert sich damit häufiger mit den sonst vorauslaufenden Hochwasserscheiteln von Neckar, Nahe und Mosel.

An der Donau beschleunigte der Flussausbau die Laufzeit einer Welle zwischen Ingolstadt und Regensburg von einst 24 auf heute 12 Stunden, zwischen Regensburg und Passau von 40 auf 30 Stunden.

An der Elbe reduzierte sich auf deutschem Staatsgebiet die Überschwemmungsfläche von $6.172~\text{km}^2$ auf heute $838~\text{km}^2$, das entspricht einer Abnahme um 86%.

Hochwasserfaktoren III. Folie 8

Gewässerausbau (Abb. 8.2): Beispiel Oberrhein.

Verschlungener Lauf: Solche Flussabschnitte gibt es in Mitteleuropa kaum noch.

- Auslöser von Hochwasser sind Niederschläge oder die Schneeschmelze. Für starke Hochwasser an großen Flüssen sind fast immer langanhaltende, großflächige Regenfälle verantwortlich.
- Auch Größe, Form und Relief des Einzugsgebietes beeinflussen Stärke und Ablauf eines Hochwassers.
- Einen Teil des Niederschlags kann der Boden aufnehmen, ab einer bestimmten Menge ist er aber wassergesättigt, dann fließt Regenwasser großflächig oberirdisch ab.
- Die Nutzung der Landoberfläche entscheidet mit darüber, wie viel Niederschlagswasser im Boden versickert und wie viel abfließt.
- Flussregulierungen haben die Hochwasserproblematik teilweise verschärft. Besonders nachteilig wirkt sich dabei der Verlust von Überschwemmungsflächen aus.

Land unter.

"... und über die Mauern der Stadt Köln fuhr man mit Kähnen … und die Schleusen des Himmels waren offen, und es fiel Regen auf die Erde wie im 600. Jahre von Noahs Leben …" (aus einem historischen Bericht zur Magdalenenflut 1342)

Dieses Kapitel gibt einen Überblick über

• bedeutende Hochwasserereignisse in historischer Zeit und heute, ihre Ursachen und Folgen.

Wasserstandsmessung: Am Pegel kann die exakte Höhe ermittelt werden.

Historische Vergleiche: Hochwassermarken an alten Bauwerken.

Hochwasserereignisse. Folie 9

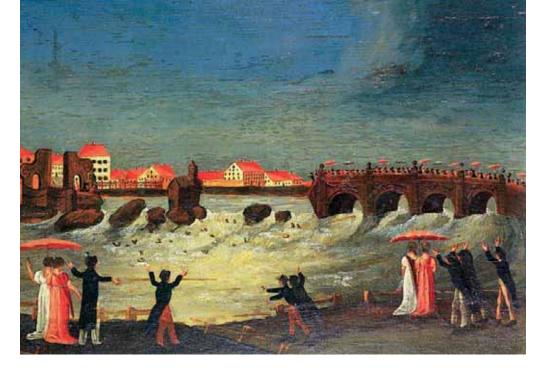
Hochwasser sind nicht immer gleich.

Hochwasser begleiten den Menschen, seit er an Flüssen wohnt. Um die Stärke verschiedener Hochwasser vergleichen zu können, hat man den Begriff der Jährlichkeit eingeführt. Sie ermittelt sich aus statistischen Auswertungen und der Beobachtung eines Flusses über einen langen Zeitraum und beschreibt die Wahrscheinlichkeit für das Eintreten eines Hochwassers mit einer bestimmten Wasserstandshöhe und Durchflussmenge (Wiederkehrsintervall). Es werden z. B. Hochwasser unterschieden, die im langjährigen Mittel alle 5, 10, 50 oder 100 Jahre auftreten (bezeichnet z. B. mit HQ 100). Letztere - oft auch als "Jahrhunderthochwasser" bezeichnet sind besonders gefährlich, weil sie sich dem Erinnerungsvermögen einer Generation entziehen und dazu verführen, in hochwassergefährdetem Gebiet zu siedeln.

Dabei kann es durchaus sein, dass sich "hundertjährliche" Hochwasser in deutlich kürzeren Abständen wiederholen. Die Bezeichnung HQ 100 sagt nur, dass ein solches Hochwasser statistisch gesehen 10 x in 1000 Jahren eintritt. Eine Frage wird immer wieder gestellt: Sind die Hochwasser heute heftiger als früher und treten sie häufiger auf? Hier hilft ein Blick auf bedeutende Hochwasserereignisse der Geschichte sowie in jüngster Zeit (Folie 9).

Was sagen die Pegel?

Ein wichtiges Kriterium zur Bestimmung der Stärke eines Hochwassers ist der Wasser-bzw. Pegelstand. Er ist abhängig von der Wassermenge, die einen definierten Querschnitt, das Hochwasserabflussprofil, durchströmt. Mit dem Pegelstand verknüpft ist auch der Hochwasserschutz. Deichhöhen orientieren sich z. B. oft am Pegel eines 100-jährlichen Hochwassers. Auch welche Schutzmaßnahmen im Hochwasserfall anlaufen, wird vom Pegelstand bestimmt. Die Pegelstände helfen, Hochwasserereignisse zu vergleichen und Schutzmaßnahmen anzupassen.


In früheren Zeiten behalf man sich mit Hochwassermarken an Gebäuden und Ufermauern, die z. T. noch heute existieren und wichtige Hinweise zur Höhe historischer Hochwasser geben. Zusammen mit Berichten aus Chroniken lassen sich schwere Hochwasser ab ca. 1000 n. Chr. einigermaßen rekonstruieren und einordnen.

Ab dem 19. Jahrhundert beginnen an vielen großen Flüssen in den mitteleuropäischen Staaten die regelmäßigen Pegelaufzeichnungen. In Bayern beispielsweise entstand das erste Netz mit 65 Messpegeln 1821, gemessen wurde täglich, bei Hochwasser auch öfter. Damit liegen verlässliche Daten vor, aus denen sich konkrete Vergleiche ableiten lassen. Heute werden an Pegeln neben dem Wasserstand auch die Fließgeschwindigkeit, die Durchflussmenge und andere Parameter gemessen bzw. ermittelt. Natürliche Erosion und Auflandungen wie auch menschliche Eingriffe in den Fluss haben bei manchen Pegeln zu Veränderungen des Pegelnullpunktes geführt. Dies muss beim Vergleich heutiger mit früheren Messungen berücksichtigt werden.

Nichts Neues in der Geschichte.

Hochwasserkatastrophen, die Hab und Gut vernichten sowie Menschenleben fordern, gab es schon immer – zu allen Zeiten und überall auf der Welt, wo Menschen in Flussgebieten leben. Doch was löste jeweils das Hochwasser aus? Was machte es zur Katastrophe? Und was lässt sich daraus lernen? Dazu einige Beispiele:

Ein Jahrtausendereignis – Die Magdalenenflut 1342. Wahrscheinlich das heftigste Hochwasser, das weite Teile Mitteleuropas je heimsuchte und vielfach als Jahrtausendflut in die Geschichte einging, ereignete sich am St. Magdalenentag (21. Juli) 1342. Die Chroniken berichten von zwei Tage andauernden Wolkenbrüchen, vermutlich aufgrund einer Vb-Wetterlage. Der Main bei Würzburg kam damals bis nahe an den Dom,

In den Fluten verschwunden: Einsturz der Steinernen Brücke (Ludwigsbrücke) 1813 in München.

das Wasser des Rheins reichte im Mainzer Dom "einem Mann bis zum Gürtel". In Köln konnte man mit Booten über die Stadtmauer fahren. Schlimmste Verheerungen wurden auch von Städten an der Donau berichtet (Regensburg, Passau, Wien), sowie von Mosel, Moldau, Elbe, Unstrut und Weser.

Ein weiteres schweres Hochwasser, das sowohl das Elbegebiet wie auch Donau und Alpen betraf, ist für August 1501 markiert. Auslöser waren ergiebige Regenfälle, Hintergrund auch hier vermutlich wieder eine Vb-Wetterlage. Das Hochwasser von 1501 ist noch in mehreren Altstädten als Hochwassermarke dokumentiert. So blieb z. B. der 2013 erreichte Höchststand des Inns in Passau (höchster Wasserstand seit Beginn kontinuierlicher Pegelmessungen) noch leicht unter dieser historischen Marke.

Alle Jahre wieder.

Historische Hochwasser führten auch deshalb oft zu starken Verheerungen, weil eine sichere Vorhersage nicht möglich war. Schon recht früh begannen aber die Menschen am Fluss, sich durch Deiche zu schützen. Mit den einsetzenden Flusskorrekturen ab dem 19. Jahrhundert wurden Schutzmaßnahmen in großem Stil umgesetzt und stetig verbessert. Hochwasserkatastrophen gab es trotzdem. Nach jedem Hochwasser wurden die Deiche aufgestockt ...

Das Elbhochwasser in Sachsen im März und April 1845 gilt als stärkstes Winter- bzw. Frühjahrhochwasser, das je an der Elbe gemessen wurde. Ausgelöst wurde es durch plötzlich auftretendes Tauwetter mit starker Schneeschmelze in den Mittelgebirgen, kombiniert mit Eisstau auf der Elbe

Am Rhein kam es im Winter 1925/1926 zu einem Hochwasser mit bis heute gehaltenen Rekordwasserständen in zahlreichen Städten, z.B. in

Köln. Problemtisch war v. a. die Überlagerung der Hochwasserwelle des Rheins mit denen verschiedener Zuflüsse wie Ill, Mosel und Lippe. In Neuwied führte dieses Ereignis dazu, die chronisch hochwasserbedrohte Stadt (Hochwasser bereits 1920 und 1924) durch eine Schutzmauer und ein Deichsystem wirkungsvoll zu schützen.

Im Frühjahr 1947 wurde der Oderbruch von einem der heftigsten Oderhochwasser des 20. Jahrhunderts heimgesucht. Bei Küstrin-Kietz bildete sich ein Eisstau, binnen kürzester Zeit sammelten sich gewaltige Wassermengen an und überspülten einen Deich. Sowjetische Flieger versuchten damals, durch Bombenabwürfe die Eisbarriere aufzubrechen.

Im Sommer 1954 waren weite Teile Mitteleuropas von Hochwasser betroffen, v. a. die Flusssysteme von Elbe und Donau. Auslöser waren heftige Regenfälle, denen ein Temperatursturz vorausgegangen war. In Passau galt das Hochwasser von 1954 als die größte Flutkatastrophe des 20. Jahrhunderts, erst übertroffen 2013.

1993 und 1995 - der Rhein.

Weihnachten 1993 erreichte der Rhein Höchstwasserstände, die z. T. knapp unter den Marken des Jahrhunderthochwassers von 1926 lagen (Köln), an anderen Stellen auch darüber (Bonn). In Koblenz fiel die sehr hohe Hochwasserwelle der Mosel nahezu zeitgleich mit dem Scheitel des Rheins zusammen.

Im Januar/Februar 1995 kam es am Rhein erneut zu einem schweren Hochwasser, das z. B. in Köln die Marken von 1993 leicht übertraf. Diese "Jahrhunderthochwasser" in enger Folge führten dazu, den Hochwasserschutz in vielen Städten am Rhein, insbesondere in Köln, weiter zu intensivieren: in direkte Schutzmaßnahmen, in die Vorhersage, aber auch in die Aufklärung der Bevölkerung.

Rekordhochwasser am Rhein: Neuwied 1925/26.

Wenn der Rhein kommt: Köln 1993.

Immer wieder vom Hochwasser bedroht: Köln am Rhein 1993.

i

Der Rhein

Der Rhein entspringt in den Alpen und entwässert auf seinem Lauf von 1.239 km zur Nordsee ein Einzugsgebiet von 185.300 km², verteilt auf neun Staaten. Der Oberlauf wird durch das Abflussgeschehen v. a. aus den Schweizer Alpen bestimmt, der Mittellauf ist durch Mittelgebirge geprägt. Wichtige Zuflüsse sind Aare, Neckar, Main und Mosel. Köln ist die am meisten von Hochwasser betroffene Millionenstadt in Europa.

1997 und 2010 – die Oder.

Die Flut vom Sommer 1997 gilt als die größte bisher bekannte Flut an der Oder. Anfang Juli 1997 waren im Oberlauf der Oder innerhalb weniger Tage die Niederschlagssummen eines Monats gefallen, an einigen Stellen sogar die doppelte Menge. Die Speicherfähigkeit der Böden war schließlich erschöpft. Schon diese erste Niederschlagswelle führte in Polen und Tschechien zu katastrophalen Überschwemmungen. Nach etwa einer Woche erreichte das Hochwasser Brandenburg. Weitere Starkniederschläge zwischen dem 18. und 21. Juli ließen die Wasserstände fast sechs Wochen lang auf höchstem Niveau verharren.

In Tschechien und Polen waren die Schäden am größten, knapp über 100 Menschen verloren ihr Leben. Auch Brandenburg war schwer betroffen, ohne die Deichbrüche in Polen wäre es vermutlich noch schlimmer gekommen.

Insgesamt mussten 300.000 Menschen ihre Wohnungen verlassen, der Sachschaden in Polen: 3,17 Mrd. Euro, in Brandenburg: 332,3 Mio. Euro. Ein Grundproblem wurde durch die Flut offensichtlich: Auch an der Oder sind durch Flussbaumaßnahmen große Flächen an Retentionsraum verloren gegangen.

Kulturerbe unter Wasser: Kloster Weltenburg beim Pfingsthochwasser 1999.

i

Die Oder

Die Oder entspringt im Mährischen Gebirge und mündet nach 854 Kilometern in das Stettiner Haff an der Ostsee. Sie ist ein typischer Tieflandfluss mit geringer Fließgeschwindigkeit. Das Einzugsgebiet ist 118.000 km² groß und liegt zu 89% in Polen. Die größten Wassermengen weist der Fluss im Spätwinter und zeitigen Frühjahr auf.

Im **Frühsommer 2010** kam es in ganz Mitteleuropa zu großen Überschwemmungen. Besonders betroffen war Rumänien, in Deutschland gab es Hochwasser vor allem an der Oder.

Im August des gleichen Jahres kam es zu heftigen Starkregen und damit verbunden zu Höchstpegeln an Neiße und Oder. Allein im Landkreis Görlitz gab es Schäden in einer Höhe von 200 Mio. Euro. Die Fluten stiegen dabei so schnell, dass kaum reagiert werden konnte.

1999, 2005 und 2009 - die Donau.

Der Alpenraum und das Donaugebiet waren in den letzten Jahren gleich mehrmals von starken Hochwassern betroffen – der Höhepunkt zuletzt im Juni 2013, dazu später mehr.

Beim sogenannten "Pfingsthochwasser" 1999 kam es zunächst vom 11.–17. Mai am Nordrand der Alpen und im Alpenvorland zu großflächigen. sehr ergiebigen Regenfällen. Die zusätzlich durch die Schneeschmelze rasch wassergesättigten Böden konnten die neuerlichen Starkregenfälle vom 20.–22. Mai nicht mehr aufnehmen. Iller. Ammer, Loisach und Isar erreichten Rekordstände mit teilweise 200- und 300-er Jährlichkeit. In Südbayern kam es an verschiedenen Stellen zu großflächigen Überschwemmungen, die als "Pfingsthochwasser" in Erinnerung blieben. Die Schadenssummen in Deutschland (Bayern und Baden-Württemberg): über 800 Mio. Euro. in Österreich und der Schweiz über 500 Mio. Euro, insgesamt 12 Tote.

Auslöser für die katastrophalen Ereignisse im August 2005 mit Erdrutschen und großflächigen Überschwemmungen in der Schweiz, Österreich und Bayern waren 24-stündige Dauerregenfälle aufgrund einer Vb-Wetterlage. Vierorts fielen mehr als $150\,1/\text{m}^2$ in 72 Stunden. In Bayern war das Loisachtal besonders betroffen, Garmisch-Partenkirchen kurzzeitig von der Außenwelt abgeschnitten. München, früher oft von Isarhochwassern bedroht, kam glimpflich davon. Der

Sylvensteinspeicher im Oberlauf der Isar hielt große Wassermengen zurück und reduzierte den Durchfluss der Isar in München auf 987 m³/s. Bis zu 1.100 m³/s sind verkraftbar, ohne den Sylvensteinspeicher wären es an die 1.800 m³/s gewesen. Die Schadensbilanz allein in Südbayern: über 170 Mio. Euro.

Die Schweiz erlebte bereits 2007 das vierte "Jahrhunderthochwasser" seit 1999, für den gesamten Alpenraum folgte schon 2009 das nächste große Hochwasser, durchaus vergleichbar mit 2005.

Diese gehäuften Hochwasserereignisse führten dazu, dass verstärkt mit der Umsetzung zahlreicher Maßnahmen zum Hochwasserschutz begonnen wurde. Bayern z. B. entwarf einen Maßnahmenplan, der die sukzessive Ertüchtigung von Hochwasserschutzbauten, eine Reaktivierung und Neuschaffung von Hochwasserrückhalteräumen und den Ausbau der Mess- und Vorhersageeinrichtungen vorsieht. Übrigens: Seit dem 19. Jahrhundert verlor die Donau 80% ihrer natürlichen Überschwemmungsgebiete.

i

Die Donau

Die Donau ist mit 2.857 km Länge und einem Einzugsgebiet von über 800.000 km² der zweitgrößte europäische Fluss, auf ihrem 687 km langen Weg durch Deutschland entwässert sie große Teile Baden-Württembergs und Bayerns. Die von Süden kommenden Zuflüsse entspringen in den Alpen bzw. im Alpenvorland. Im Winter sind hier die Niederschläge oft in Form von Schnee gebunden, Schmelzwasser und Stauniederschläge am Nordrand der Alpen führen v. a. im Sommer zu Hochwasser. Bei den nordseitigen Zuflüssen sind Hochwasser im Winter und Frühjahr häufiger.

Hochwasserschwerpunkte sind Donauwörth, Regensburg und v. a. die Dreiflüssestadt Passau. Dort trifft der wasserreichere Inn auf die Donau. In der Regel kommt die Hochwasserwelle des Inns früher in Passau an als die der Donau, in seltenen Fällen ist es auch mal umgekehrt. Der unwahrscheinliche, aber nicht unmögliche Fall eines gleichzeitigen Eintreffens der Wellen ist für Passau verheerend, dies war vermutlich beim Rekordhochwasser 1501 der Fall.

2002 und 2006 – die Elbe.

Das Hochwasser vom **Sommer 2002** im Elbegebiet wird teilweise als **Jahrtausendhochwasser**

bezeichnet. Es brachte z. B. in Dresden Hochwasserstände bisher nicht gekannten Ausmaßes, die Teile der Altstadt mit weltberühmten Bauten wie Hofkirche, Opernhaus und Zwinger sowie den Hauptbahnhof unter Wasser setzten.

Als Auslöser gilt wiederum eine Vb-Wetterlage mit ergiebigsten Regenfällen, v. a. im Erzgebirge. Der "Bodenschwamm" ist rasch gefüllt – mit verheerenden Auswirkungen: Land unter an der Moldau, kurz danach Katastrophenalarm in Dresden. Die Mulde, aus dem Erzgebirge kommend, tritt über die Ufer und staut sich bei der Einmündung in die Elbe zurück. Überschwemmungen und Millionenschäden v. a. in Sachsen, Sachsen-Anhalt und Brandenburg. Entspannung für die tieferen Elbregionen Sachsen-Anhalts sowie für Niedersachsen und Schleswig-Holstein bringen die natürlichen Retentionsräume mit den Auwäldern entlang des Biosphärenreservats "Mittlere Elbe" sowie die künstliche Flutung der Havelpolder. Hier führt der lange Einstau – die faulende Vegetation unter Wasser entzieht große Sauerstoffmengen – nach dem Rückfluss des Wassers zu einem dramatischen Fischsterben.

Nicht zuletzt aufgrund dieser Ereignisse hat die Internationale Kommission zum Schutz der Elbe (IKSE) den "Aktionsplan zum Hochwasserschutz" ins Leben gerufen. Technische Anlagen sollen modernisiert und ehemalige Überschwemmungsgebiete reaktiviert werden. Die Hochwasserschutzkonzeption des Landes Sachsen-Anhalt legt den Schwerpunkt auf das Ausweisen von Überschwemmungsgebieten, Deichrückverlegungen und eine Erhöhung der Retentionswirkung.

Die Elbe

Die Elbe entspringt im tschechischen Teil des Riesengebirges und mündet nach einer Fließstrecke von 1.097 Kilometern (davon 727 Kilometer in Deutschland) unterhalb von Hamburg in die Nordsee. Ihr Einzugsgebiet umfasst 148.260 km². Die größten Nebenflüsse sind Moldau und Eger (Tschechische Republik) sowie Schwarze Elster, Mulde, Saale und Havel (Deutschland).

Im März 2006 kam es im Elbegebiet wiederholt zu einem Hochwasser, das im Mittellauf durchaus mit dem von 2002 vergleichbar war. Bisher noch nie gemessene Werte wurden dann aber bei der Flut vom Juni 2013 erreicht.

Geflutet: Neustadt an der Donau.

Durchgespült: Schlottwitz in Sachsen.

Unter Wasser: die Innenstadt von Pirna.

Notorischer Hochwasserschwerpunkt: die Dreiflüssestadt Passau am Zusammenfluss von Inn, Donau und Ilz (von rechts nach links).

Juni 2013 - Donau und Elbe.

Auslöser für dieses Hochwasser war eine besondere Wetterkonstellation (keine Vb-Wetterlage!), bei der Warmluft aus Osteuropa sowie dem Mittelmeerraum auf Kaltluft in Süddeutschland gelenkt wurde. Entlang dieser Luftmassengrenze kam es wiederholt zu ergiebigen Regenfällen: In Bayern und Sachsen fiel ab dem 30. Mai ein nahezu 96-stündiger Dauerregen, gefolgt von weiteren Niederschlägen vom 9.–10. Juni, die sich in den Staulagen v. a. von Alpen, Schwäbischer Alb, Schwarzwald und Erzgebirge weiter intensivierten.

Verschärfend kam hinzu, dass bereits **der gesamte Mai zu nass** war und die Böden in Deutschland auf 40% ihrer Fläche Bodenfeuchtewerte aufwiesen, wie sie der Deutsche Wetterdienst noch nie gemessen hatte.

Das Flussgebiet des Rheins kam vergleichsweise glimpflich davon, hier gab es v. a. am Neckar größere Schäden. Durch die gezielte Flutung von Poldern und Retentionsräumen am Oberrhein konnte die Hochwasserwelle stromabwärts deutlich gekappt werden (bei Speyer 20–30 cm, bei Mannheim 15 cm). Während die Welle bei Mannheim fast zeitgleich mit der sehr steilen und hohen Hochwasserwelle des Neckars zusammenfiel, lief der Hochwasserscheitel der Mosel früher durch und hatte dadurch keinen Einfluss mehr auf den Rheinpegel. Der Rheinpegel flachte flussabwärts weiter ab, in Köln und am Niederrhein wurden keine nennenswerten Hochwasserstände

In Bayern waren nahezu alle Flussgebiete betroffen, das Hochwasser konzentrierte sich erst auf das

das Hochwasser konzentrierte sich erst auf das Maingebiet und die nördlichen Donauzuflüsse, dann auf die Donau selbst und die südlichen Zuflüsse. Während das Hochwasser an Iller, Lech oder Isar noch vergleichsweise moderat ausfiel, schwoll der Inn durch sehr hohe Zuflüsse v. a. aus der Salzach dramatisch an. In Passau stieg der Pegel am 3. Juni über das Rekordhochwasser von 1954.

Eine zweite Welle rollte über die Donau flussabwärts und erreichte Regensburg. Ab hier wurden die Höchststände von 1999 und 2005 übertroffen und brachten die technischen Schutzbauten

reihenweise an ihre Bemessungsgrenzen. In Regensburg und am Kloster Weltenburg bestanden die neu installierten mobilen Schutzwände ihre Bewährungsprobe. Bei Deggendorf führten Deichbrüche allerdings zur Überschwemmung mehrerer Siedlungen sowie sogar einer Autobahn. Das Hochwassergeschehen flussabwärts wurde dadurch kurzzeitig etwas entlastet. Neuerliche Regenfälle im Bereich der Oberen Donau führten dann noch zu einer dritten Welle, die aber nicht mehr so hoch war.

Vom Hochwasser überrascht: Manchmal bleibt kaum Zeit zu reagieren.

Im tschechischen Teil des Elbeeinzugsgebietes wurde der Hochwasserverlauf stark durch die Moldau bestimmt.

Der Hochwasserscheitel in Dresden war ca. 60 cm unter dem von 2002. Im sächsischen Teil der Elbe kam es zu insgesamt fünf, entlang der Mulde zu 19 Deichbrüchen. 2002 waren es noch über 100 gewesen, sodass diesmal die Mulde weniger stark gedämpft wurde. Die ohnehin schon höchst angespannte Hochwasserlage der Elbe verschärfte sich weiter durch die Zuflüsse von Saale und Elster. Hier wurden teilweise Rekordstände gemessen. der Hochwasserscheitel der Saale fiel zudem mit dem der Elbe zusammen. Dies führte schließlich am Pegel Magdeburg zu einem historischen Höchststand der Elbe. Eine Entlastung um bis ca. 40 cm für den weiter flussabwärts gelegenen Pegel in Wittenberge brachte die gezielte Flutung der Havelpolder sowie ein Deichbruch bei Fischbeck/Tangermünde am 10. Juni.

Insgesamt wurden im Juni 2013 an mehreren Abschnitten der Donau sowie an Elbe und Saale die höchsten bislang bekannten Wasserstände überschritten. Dabei wurden mitunter Jährlichkeiten bis 500 Jahre ermittelt. Eine Besonderheit an der Elbe war auch die enorme Scheitellänge, die sechs Tage lang für die höchste Alarmstufe sorgte.

Außerhalb von Deutschland führten die langanhaltenden Regenfälle v. a. in Österreich zu Schäden, betroffen waren u. a. auch Tschechien, Polen, Ungarn und die Slowakei.

Blick über den Tellerrand.

Bei den schweren Hochwassern der letzten Jahre kam es in Deutschland – v. a. dank funktionierender Hochwasservorhersagen, moderner Schutzvorrichtungen und des Einsatzes der Hilfsdienste – glücklicherweise selten zu Todesopfern. Dies war in der Vergangenheit anders. Das größte bekannte Hochwasserereignis in Mitteleuropa, die Magdalenenflut von 1342, soll mehrere Tausend Tote gefordert haben. Hochwasserkatastrophen in ganz anderen Dimensionen fanden und finden aber im Ausland statt:

Sehr große Hochwasserkatastrophen sind v. a. aus **China** bekannt, wo die großen Ströme ganz andere Wassermassen transportieren als etwa die Flüsse in Mitteleuropa. Bei einer Hochwasserkatastrophe am "**Gelben Fluss" 1887** sind vermutlich zwischen 900.000 und 2 Millionen Menschen zu Tode gekommen, **1931** sogar bis zu 4 Millionen. Das Hochwasser am **Jangtsekiang 1998** führte zu über 3.700 Toten, 15 Mio. Obdachlosen und einer geschätzten Schadenssumme von 26 Mrd. US-Dollar. Zum Vergleich: Der Jangtsekiang ist mit einer Länge von 6.380 km der größte Fluss Chinas, sein Einzugsgebiet umfasst über 1,7 Mio. km² (das entspricht der fast 5-fachen Fläche Deutschlands).

Große Hochwasser treten auch in Nordamerika auf. Am Mississippi wurde 1927 eine Fläche von 70.000 km² überschwemmt, 700.000 Menschen mussten evakuiert werden. 1998 kam es in weiten Teilen von Texas zu verheerenden Überflutungen.

Sehr hochwassergefährdet ist auch der Ganges (Indien, Bangladesch). 2010 wurden nach ungewöhnlich starken Monsunregen weite Teile Pakistans entlang des Indus überschwemmt, über 1.700 Menschen kamen ums Leben. Mehr als 14 Mio. Menschen waren von der Flut betroffen,

Riesige Flächen überschwemmt: Hochwasser in Ostasien, Thailand.

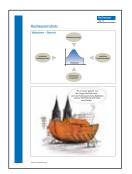
weite landwirtschaftliche Flächen mit Baumwolle, Zuckerrohr, Reis etc. wurden vernichtet. Auch Australien, eher für Hitzewellen bekannt, wurde in den vergangenen Jahren mehrmals von Hochwasserkatastrophen heimgesucht (Queensland 2011 aufgrund des Zyklons Tasha, 200.000 evakuierte Menschen, 35 Todesopfer; Victoria 2011).

Das nächste Hochwasser wird kommen ...

Beobachtungen über lange Zeiträume zeigen, dass extreme Hochwasser sich manchmal nach wenigen Jahren wiederholen, dann gibt es wieder Pausen von 30–40 Jahren. Dadurch lässt sich im Moment eine vielfach diskutierte signifikante Häufung oder Verstärkung von Hochwasserereignissen gegenüber früher aus den vorhandenen Daten noch nicht zweifelsfrei belegen. Eindeutig gestiegen sind dagegen die Schadenssummen.

Weitere Beobachtungen: Die stetig verbesserten Warndienste und Vorhersagen sowie Investitionen in den Hochwasserschutz zeigen trotz aller Schäden Wirkung. Die wichtigste Erkenntnis lautet allerdings: Die Flüsse brauchen mehr Raum! Anders können die Wassermengen, die nach tagelangen Niederschlagsereignissen zwangsläufig entstehen, nicht bewältigt werden.

Heißer Kontinent ganz nass: Überschwemmungen in Queensland (oben) und Victoria, Australien (unten).


- Die Höhe eines Hochwassers wird heute über Pegelmessungen genau dokumentiert. Man unterscheidet Hochwasser unterschiedlicher Jährlichkeit. Hochwasser mit der Jährlichkeit HQ 100 werden oft als "Jahrhundertfluten" bezeichnet.
- Hochwasserkatastrophen gab es an den großen Flusssystemen Mitteleuropas schon immer. Während sich die Hochwasserwarnung stetig verbessert und auch Schutzvorrichtungen nach jedem Hochwasser verstärkt werden, machen sich vor allem die fehlenden Retentionsräume nachteilig bemerkbar. Durch die Besiedelung der Auen haben zudem die Schadenssummen zugenommen.
- An anderen Orten der Welt fallen Hochwasserkatastrophen oft noch heftiger als hierzulande aus, da die Flüsse, z. B. in China, viel größere Dimensionen als Rhein, Donau oder Elbe aufweisen und Warn- und Schutzsysteme noch nicht so ausgebaut sind.

Hochwasserschutz.

Wer am Fluss wohnt, muss mit Hochwasser rechnen. "Et kütt wie et kütt" sagt der hochwassererprobte Kölner. Absoluten Schutz gibt es nicht. Aber man kann sich auf Hochwasser vorbereiten und die Gefahren minimieren.

In diesem Kapitel erfahren Sie mehr über

• verschiedene Maßnahmen zum Hochwasserschutz.

Hochwasserschutz. Folie 10

Lehren ziehen.

Auch die Hochwasser der vergangenen Jahre haben wieder gezeigt: Deiche allein reichen nicht aus. Vielmehr ist ein ganzes Bündel von Hochwasserschutzmaßnahmen notwendig:

- Maßnahmen, die an den Ursachen und der Entstehung von Hochwasser ansetzen
- Vorbereitung auf das Hochwasser
- Maßnahmen während eines Hochwassers
- Nachsorge und Nachbereitung.

Die starken Hochwasser, die nach tagelangem Dauerregen über großen Einzugsgebieten entstehen, lassen sich nicht verhindern. Aber man kann darauf reagieren:

- gefährdete Gebiete von Bebauung freihalten, dem Fluss Raum geben
- potenzielle Schäden durch Schutzmaßnahmen und Verhaltensweisen minimieren
- gewisse Beeinträchtigungen oder Schäden in Kauf nehmen, das Hochwasser akzeptieren.

Ein Bündel von Maßnahmen.

Hochwasser sind komplexe Ereignisse, die eine Betrachtung des gesamten Flussgebietes nötig machen. Schutzmaßnahmen lassen sich in unterschiedliche Bereiche gliedern (Folie 10):

Technischer Hochwasserschutz.

Dazu zählen der Bau und die Unterhaltung von Hochwasserschutzeinrichtungen wie z. B. Deiche und Polder.

Koordination und Kooperation.

Die großen Flusssysteme in Mitteleuropa erstrecken sich über Grenzen von Bundesländern und Staaten. Dies erfordert, Hochwasserschutzmaßnahmen abzustimmen und den Informationsaustausch im Hochwasserfall zu koordinieren – über Ländergrenzen hinweg bis hin auf die internationale Ebene.

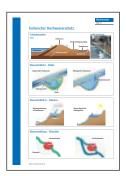
Sie bedeutet auf öffentlicher Seite den Aufbau entsprechender Warndienste, die Aufstellung von Maßnahmenplänen im Hochwasserfall und die Aufklärung der Bevölkerung über die Risiken. Darüberhinaus ist jeder Einzelne in Hochwassergebieten für seinen Schutz und den seines Eigentums verantwortlich.

Natürlicher Wasserrückhalt.

Niederschläge sollten vor Ort versickern können, Wasser möglichst lange in der Landschaft zurückgehalten werden. Zudem benötigen die Flüsse mehr Raum. Der Erhalt natürlicher Retentionsräume und wenn möglich deren Neuschaffung sind deshalb ein wichtiger Beitrag zum vorsorgenden Hochwasserschutz.

Technischer Hochwasserschutz.

Zum technischen Hochwasserschutz gehören Deiche, Dämme, Mauern und mobile Schutzwände sowie künstliche Rückhaltebecken, Talsperren und steuerbare Polder, die das zielgenaue Kappen einer Hochwasserspitze ermöglichen (Folie 11).


Deiche und Schutzmauern.

Schon sehr früh versuchte der Mensch, sich mit **Deichen** vor Hochwasser zu schützen. An Rhein, Oder, Donau und Elbe kann der Deichbau auf eine mehr als tausendjährige Geschichte zurückblicken.

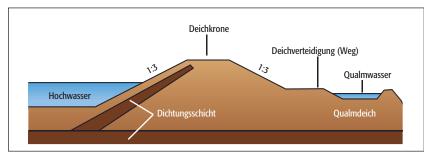
Sommerdeiche schützen dabei meist landwirtschaftliche Flächen vor Sommerhochwasser, sie können bei Hochwasser im Winter überströmt werden. Siedlungen sind durch die höheren Winterdeiche oder Hauptdeiche geschützt. Moderne Flussdeiche weisen einen Böschungswinkel von 1:3 auf. Durch den hohen Druck des Wasserstandes im Hochwasserfall tritt auf der Deichinnenseite sogenanntes Qualmwasser aus, das durch einen kleineren Qualmdeich aufgefangen wird (Folie 11, Abb. 11.1).

Schützt vor Hochwasser: Ein Flussdeich wird gebaut.

Technischer Hochwasserschutz. Folie 11

Schwierig ist der Hochwasserschutz besonders im innerstädtischen Bereich, weil es oft an Platz mangelt und auch gestalterische und denkmalschützerische Belange von Bedeutung sind. Hier sind Fingerspitzengefühl und innovative Lösungen gefragt, die Hochwasserschutz, Stadtbild und Denkmalschutz miteinander vereinbaren. Für den historischen Stadtkern von Wasserburg am Inn wurden z. B. Lösungen entwickelt, bei denen die Hochwasserschutzbauten gut in das Gesamtbild integriert sind. Mobile Schutzwände, die z. B. die Kölner Altstadt schützen, haben sich inzwischen in vielen Städten bewährt. Sie können im Katastrophenfall schnell aufgebaut werden.

Hochwassermauern sind im innerstädtischen Bereich meist mit Pumpwerken kombiniert. Sie entwässern im Hochwasserfall tiefer liegende Stadtteile, in die das Grundwasser von unten hereindrückt oder in denen es zu einem Rückstau aus der Kanalisation kommt.


Deiche müssen **gepflegt**, **überwacht** und wenn nötig **saniert** werden. Auch die Höhe der Deiche ist den aktuellen Erfordernissen anzupassen. Denn wird ein Deich überflutet, führt die Erosion des Deichkörpers in relativ kurzer Zeit zum Bruch. **Deichbrüche** bei überalterten Anlagen waren bei den Hochwassern der vergangenen Jahre oft die Ursache für großflächige Überflutungen mit hohen Schäden.

Deiche sind im Zusammenhang mit dem Hochwasserschutz nicht unproblematisch. Liegen die Deiche sehr eng am Fluss und schneiden ihn vom natürlichen Retentionsraum ab, wird die Hochwasserwelle beschleunigt und das Hochwasserproblem zum Unterlieger verlagert. Und: Jeder Deich ist nur bis zu einer bestimmten Hochwasserbemessungsgrenze ausgerichtet, meist auf ein 100-jährliches Ereignis. Ist das Hochwasser höher, oder steht das Wasser lange an und weicht den Deichkörper auf, kann das Schutzsystem versagen. Dann ist der Schaden oft besonders hoch, weil "man sich ja hinter dem Deich sicher wähnte".

Polder und Talsperren.

Der Rückhalt von Wasser in den Ober- und Mittelläufen ist ein wichtiger Baustein des Hochwasserschutzes.

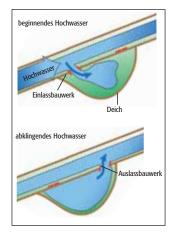
Hochwasserpolder werden nur bei einem Hochwasser geflutet, z. B. durch einen Überlauf im Deich, dann füllt sich der Polder automatisch. Ein gesteuerter Hochwasserpolder kann über ein regelbares Einlaufbauwerk Wasser gezielt zurück-

halten, damit lassen sich Hochwasserspitzen kappen. Über ein Auslaufbauwerk wird das Wasser gedrosselt wieder abgelassen (Folie 11, Abb. 11.2). Hochwasserpolder sind nur für den Notfall vorgesehen und können sonst landwirtschaftlich genutzt werden.

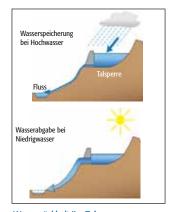
Rückhaltebecken liegen meist im direkten Verlauf des Flusses und dienen der Regelung des Wasserstandes. Sie sind damit öfter mehr oder minder stark geflutet, die Ufer meist befestigt.

Talsperren halten Hochwasser schon im Oberlauf zurück. Sie werden oft auch für Trinkwasserversorgung, Energiegewinnung oder als Freizeitanlage genutzt. Talsperren speichern Wasser und geben es bei Niedrigwasser an den Fluss ab (Folie 11, Abb. 11.3). Der Wasserstand wird oft computergesteuert überwacht. Droht ein großes Hochwasser, wird im Vorfeld relativ viel Wasser abgelassen, um den Speicher aufnahmefähig zu machen. Für den Hochwasserschutz von München hat sich z. B. der Sylvensteinspeicher am Oberlauf der Isar seit seiner Inbetriebnahme 1959 schon mehrfach bewährt.

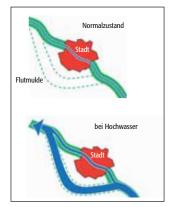
Flutmulden.


Eine Flutmulde ist ein künstlich angelegtes Flussbett und führt im Hochwasserfall Wasser um eine Siedlung herum (Folie 11, Abb. 11.4). In der hochwasserfreien Zeit werden Flutmulden meist als Grünland genutzt.

Hochwasser kennt keine Grenzen.

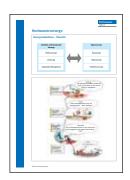

Da Hochwasser vor Grenzen nicht haltmachen, kommt der länderübergreifenden Zusammenarbeit beim Hochwasserschutz an großen Flüssen eine besondere Bedeutung zu. Sie präzisiert die Hochwasservorhersagen und ist auch entscheidend für das Hochwassermanagement zwischen Ober- und Unterlieger am Fluss: Maßnahmen beim Oberlieger, z. B. die gezielte Flutung eines Polders, kann die Lage beim Unterlieger deutlich entspannen.

Internationale Hochwasseraktionspläne bestehen in unterschiedlichen Detaillierungsschärfen bereits für die großen Flusssysteme von Rhein, Elbe, Oder und Donau. Sie sind aber nicht rechtlich bindend, sondern entsprechen nur politischen Willenserklärungen.


Schutzbauwerke – Deich (Abb. 11.1): Kern des technischen Hochwasserschutzes.

Wasserrückhalt I – Polder (Abb. 11.2): Hochwasserspitzen kappen.

Wasserrückhalt II – Talsperre (Abb. 11.3): Regenwasser speichern.


Wasserumleitung – Flutmulde (Abb. 11.4): Hochwasser gefahrlos umleiten.

Platzsparend und schnell aufgebaut: eine mobile Schutzwand.

Im Hochwasserfall zur Stelle: die Feuerwehr

Hochwasservorsorge. Folie 12

Auf nationaler Ebene liegen die Kompetenzen im Wesentlichen bei den 16 Bundesländern. Hier wurden gemeinsame Hochwasserschutzprogramme von Bund und Ländern entwickelt.

Beispiele internationaler Kooperation

Rhein

In der Internationalen Kommission zum Schutz des Rheins (IKSR) in Koblenz arbeiten die Rheinanliegerstaaten sowie die Europäische Union zusammen. Der bereits 1998 erarbeitete Aktionsplan Hochwasser hat u. a. zum Ziel, das Hochwasserbewusstsein bei der Bevölkerung zu schärfen und die Vorhersagezeiträume zu verlängern.

Elbe

In der Internationalen Kommission zum Schutz der Elbe (IKSE) sind seit 1990 Deutschland und Tschechien verbunden. Auch ihr Aktionsplan beinhaltet Maßnahmen zum vorbeugenden Hochwasserschutz, z. B. die Sicherung und Neuschaffung von Retentionsräumen.

Oder

Die Internationale Kommission zum Schutz der Oder gegen Verunreinigung (IKSO) (Partner sind Deutschland, Polen, Tschechien und zeitweise die Europäische Union) erarbeitete eine abgestimmte Hochwasserschutzkonzeption. Ziel ist die Schaffung von Retentionsräumen und eine ausreichende Dimensionierung der Deiche.

Donau

Auch die Internationale Kommission zum Schutz der Donau (IKSD), gegründet 1998, entwickelt Strategien zum Hochwasserschutz. Ihr gehören 13 Staaten sowie die EU an.

Hochwasservorsorge.

Wie die vergangenen Hochwasser gezeigt haben, funktioniert technischer Hochwasserschutz stets nur bis zu einer definierten Hochwasserhöhe. Auch vermeintlich sichere Gebiete hinter den Deichen können betroffen sein. Deshalb ist es wichtig, das grundsätzliche Bewusstsein für die Hochwassergefahren aufrechtzuerhalten. Die eigentliche Hochwasservorsorge umfasst dann verschiedene Bereiche (Folie 12):

- Informationsvorsorge (Vorhersage, Katastrophenmanagement)
- Flächenvorsorge (Freihalten von Überschwemmungsgebieten)
- Bauvorsorge (hochwasserangepasstes Bauen)
- Verhaltensvorsorge (richtiges Verhalten im Hochwasserfall)
- Risikovorsorge
 (z. B. Verdeutlichung der Risiken durch Hochwasserkarten).

Informationsvorsorge – je früher, desto besser. Die Hochwasserwarnung informiert Behörden und Bevölkerung über den zu erwartenden Wasserstand. Je früher und je präziser die Warnung erfolgt, desto schneller können Schutzmaßnahmen ergriffen werden. Die Zuständigkeit bei der Hochwasserwarnung liegt bei den Hochwasserzentralen der Bundesländer. Um die Vorhersageräume zu erweitern, ist die Hochwasservorhersage mit modernster Mess- und Kommunikationstechnik ausgestattet. Dazu wird das Netz der Messstellen – auch an Nebenflüssen – ständig erweitert und verfeinert. Messdaten werden automatisch aufbereitet und durch Wettervorhersagen des Deutschen Wetterdienstes ergänzt. Über Computermodelle, die für die einzelnen Flusssysteme passgenau erstellt wurden, können die Wasserstände für die nächsten 6, 12, 24 oder 48 Stunden berechnet werden. Aber: Trotz aller Technik – eine gewisse Unsicherheit bleibt. Nicht alles ist vorhersehbar, Deichbrüche z.B. können die Entwicklung einer Überschwemmung dramatisch schnell verändern.

Die Hochwassernachrichten werden in vier Meldestufen weitergegeben, ergänzt mit Aussagen zur Tendenz (Pegel fallend, Pegel steigend) und dem Eintrittszeitpunkt des Hochwasserscheitels.

1 M

Meldestufen:

- 1: stellenweise kleinere Ausuferungen
- 2: land- und forstwirtschaftliche Flächen überflutet, z. T. auch Verkehrsbehinderungen
- 3: einzelne bebaute Grundstücke oder Keller geflutet sowie überörtliche Verkehrswege; Dammwehr erforderlich
- 4: bebaute Flächen in größerem Umfang betroffen; Einsatz des Katastrophenschutzes in großem Umfang

Die Hochwassernachrichten können über das Internet sowie über Telefonansagen, Fernsehen und Radio empfangen werden. Bei entsprechend hoher Meldestufe informieren die Kommunen die betroffenen Bürger direkt. Landratsämter und Gemeinden stellen individuelle Alarm- und Einsatzpläne auf, die auch den Einsatz von Feuerwehr oder Technischem Hilfswerk regeln. Im Katastrophenfall können zusätzliche Kräfte des Bundes wie z. B. die Bundeswehr herangezogen werden.

Flächenvorsorge – Gebiete frei halten.

Der beste vorsorgende Hochwasserschutz in Überschwemmungsgebieten ist der Verzicht auf Bebauung. Das Wasserhaushaltsgesetz (WHG) definiert Überschwemmungsgebiete als Flächen, die bei einem Hochwasser, das statistisch alle 100 Jahre eintritt, überflutet werden.

Die Bundesländer sind verpflichtet, diese Gebiete z. B. im Rahmen ihrer Regionalplanung auszuweisen, einschließlich der Flächen, die zur Hochwasserentlastung und zum -rückhalt dringend gebraucht werden.

Per Gesetz unterliegt in festgesetzten Überschwemmungsgebieten das Baurecht strengen Auflagen, die Umwandlung von Grünland oder Auwald in andere Nutzungsarten (z. B. Ackerflächen) ist untersagt. Die Gemeinden sind angehalten, im Rahmen ihrer Selbstverwaltung die Bebauung in solchen Gebieten zu verhindern. z. B. über Flächennutzungs- und Bebauungspläne. Trotzdem bleibt aber auch im WHG das Bauen in Überschwemmungsgebieten nicht gänzlich verboten. So sind Ausnahmen möglich, wenn z. B. keine andere Möglichkeit zur Siedlungsentwicklung besteht, eine Gefährdung von Leib und Leben oder hohe Sachschäden nicht zu erwarten sind oder der Hochwasserabfluss nicht nachteilig beeinflusst wird. In diesem Fall sollte die Bauvorsorge größte Beachtung finden.

Bauvorsorge – hochwasserangepasst bauen.

Durch angepasstes Bauen lassen sich in gefährdeten Bereichen viele Hochwasserschäden vermeiden.

Hochwasserdichte Kellerräume sind dabei nicht unbedingt die beste Lösung, da entsprechend abgedichtete Häuser bei Hochwasser aufschwimmen können – mit erheblichen Gebäudeschäden. Ggfs. müssen die unteren Räume gezielt geflutet werden. Dann ist es wichtig, dies schon beim Bau zu berücksichtigen, z. B. durch wasserbeständige Baustoffe, Wandfarben und Bodenbeläge.

Technische Einrichtungen oder teure Ausstattungen werden am besten in oberen Stockwerken platziert. Wichtig ist auch eine absperrbare Hausentwässerung, damit es nicht zum Rückstau aus der Kanalisation kommt. Ölheizungen sind in Überschwemmungsgebieten kritisch zu sehen, da Öltanks nur bis zu einer bestimmten Überschwemmungshöhe gesichert werden können.

In Köln wurde in Rheinnähe eine Tiefgarage für 1.200 Autos gebaut – übrigens mit 1,6 km die längste Europas –, die bei Hochwasser geräumt und geflutet werden kann. Auch die neue Bebauung und Nutzung des Rheinauhafens ist auf eine Überflutung ausgelegt.

In der Passauer Altstadt ist ein wirksamer Hochwasserschutz der flussnahen und tiefliegenden Bereiche aus Platzmangel und aus Gründen des

Keine gute Lösung: ein Neubaugebiet in der Aue.

Stadtbildes kaum möglich. Hier sind die Anwohner aufgefordert, die unteren Geschosse nur für untergeordnete Zwecke zu nutzen und Wohnräume und Büros nach oben zu verlagern. In Kallmünz an der Naab entschieden sich die Bürger aus finanziellen und städtebaulichen Gründen gegen aufwändige technische Schutzbauten und für entsprechende Maßnahmen an den Gebäuden selbst sowie für eine Gebäudenutzung, die die Hochwassergefahr berücksichtigt.

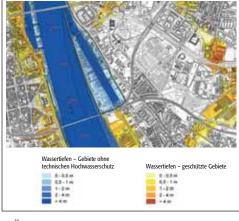
Verhaltensvorsorge – Eigeninitiative unterstützen.

In vielen Risikogebieten wird die Bevölkerung regelmäßig darüber informiert, wie sie sich schützen kann. Merkblätter, Informationsveranstaltungen oder auch entsprechende Übungen leisten hier einen wichtigen Vorsorgebeitrag. Im Hochwasserfall ist eine präzise und rechtzeitige Warnung wichtig. Die Betroffenen haben dann ausreichend Zeit, Schutzmaßnahmen zu ergreifen und z. B. Fenster und Türen zu sichern oder wertvolle Gegenstände aus dem Gefahrenbereich zu bringen.

Hochwasserangepasstes Bauen: Die neuen Gebäude am Rheinauhafen in Köln sind auf eine Überflutung ausgelegt.

Vorsorge: In Wasserburg am Inn sind die Schutzanlagen in das Stadtbild eingefügt, die Bevölkerung auf Hochwasser eingestellt.

Gefahrenbewusstsein und natürlicher Schutz. Folie 13


Hochwassergefahr (Abb. 13.1): Farben zeigen die Gefährdung.

Bachrenaturierung: Auch Maßnahmen an kleinen Gewässern leisten einen Beitrag zum Hochwasserschutz

Risikovorsorge – die Gefahr abschätzen.

In Deutschland haften weder Bund, Länder noch Kommunen für Hochwasserschäden an privaten Gebäuden oder Grundstücken. Betroffene müssen das Hochwasserrisiko deshalb selbst absichern. Dazu wurden Datenbanken wie z. B. das "Zonierungssystem für Überschwemmung, Rückstau und Überflutung durch Starkregen"

(ZÜRS) entwickelt. Das System gliedert die Gefährdung in vier Klassen. Klasse 4 gilt z. B. für stark hochwassergefährdete Flächen mit einer Jährlichkeit von 10 Jahren. Gebäude- und Grundstückseigentümer können anhand von Hochwassergefahrenkarten erkennen, ob ihr Eigentum gefährdet und eine spezielle Versicherung sinnvoll ist (Folie 13, Abb. 13.1).

i

Hochwasserkarten

Das Hochwasserrisiko verbindet die Eintrittswahrscheinlichkeit eines Hochwassers mit den zu erwartenden Schäden. Für einen Auwald in einer Aue, die etwa alle 20 Jahre überschwemmt wird, besteht ein geringes Schadensrisiko, für ein Wohn- oder Gewerbegebiet im gleichen Fall ist das Risiko hoch. Dies wird in Hochwasserrisikokarten dargestellt, die Risikogebiete können dabei auch hinter einem Deich liegen.

Hochwassergefahrenkarten zeigen die vom Hochwasser betroffenen Flächen bei unterschiedlich starken Hochwassern (z. B. 10-jährlich, 100-jährlich ...) mit Angaben zu Überflutungshöhe und Fließgeschwindigkeit. Beide Karten sind öffentlich zugänglich und können in der Kommune oder im Internet eingesehen werden.

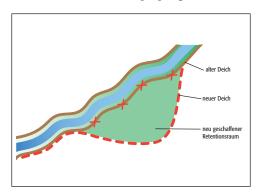
Ein wichtiger Aspekt bei der Einschätzung von Risiken ist der des **Schadenspotenziales**. Hier hat die IKSR in ihrem "Rheinatlas zur Überschwemmungsgefährdung und zu den möglichen Schäden

bei einem extremen Hochwasser" die in den Überschwemmungsflächen liegenden Vermögenswerte für einzelne Flussabschnitte erhoben und daraus die möglichen Sachschäden ermittelt. Bei einem Wasserstand eines 200-jährlichen Hochwassers zzgl. 50 cm würde der Rhein derart ausufern, dass für den gesamten Rheinverlauf mit Sachschäden in Höhe von 165 Mrd. Euro zu rechnen wäre. Nicht enthalten sind dabei die Kosten für Produktionsausfälle in Industrie und Gewerbe, Einsatzkosten von Feuerwehr und Katastrophenschutz, soziale Kosten sowie Kosten für ökologische Schäden etwa durch das Einlaufen wassergefährdender Stoffe in den Rhein. Ganz zu schweigen von Todesfällen im Zusammenhang mit dem Hochwasser oder unwiederbringlichen Verlusten an Kulturgütern.

Natürlicher Wasserrückhalt.

Der wichtigste natürliche Rückhalteraum ist eine intakte Aue, die mit dem Fluss in Verbindung steht, sowie darüber hinaus alle natürlichen Speicher im gesamten Einzugsgebiet. Es sollte so viel Wasser so lange wie möglich auf der Fläche gehalten werden und auch dort versickern. Jedes Hochwasser fängt klein an. Und gerade bei kleinen Gewässern verstärken sich Hochwasser schnell. Nicht nur deshalb macht es Sinn, mit Maßnahmen bereits an den Quell- und Nebengewässern und ihren Einzugsgebieten anzusetzen:

- Verbesserung der Regenwasserversickerung durch entsprechende landwirtschaftliche Methoden (schonende Bodenbearbeitung, Umwandlung von Acker in Grünland, Mulchsaaten und Zwischenfruchtanbau)
- dezentrale Versickerung im Siedlungsbereich
 (z. B. durch Mulden/Rigolen)
- ausreichende Überflutungsflächen auch an kleinen Gewässern
- Renaturierung kleiner Gewässer.


Mehr Raum für den Fluss.

Die oben genannten Maßnahmen helfen v. a. bei regional begrenzten Hochwassern in kleinen Einzugsgebieten und zögern die Hochwasserentstehung heraus. Wie in den vorhergehenden Kapiteln beschrieben, haben sie auf die Entwicklung großflächiger Hochwasser in Verbindung mit tagelangen Niederschlägen keinen Einfluss mehr.

Eine der entscheidenden Maßnahmen beim vorsorgenden Hochwasserschutz ist deshalb, den Flüssen ihre Auen und Überflutungsflächen zurückzugeben, dem Fluss mehr Raum zu geben.

Dies dämpft die Hochwasserwelle und verzögert den Abfluss. Eine naturnahe Aue mit Auwäldern minimiert zudem das Schadenspotenzial erheblich. Gerade hier liegt aber auch das Problem: Ein Großteil der Auen an unseren Flüssen ist verschwunden. Die Verluste an naturnahen Auen betragen in manchen Flusssystemen bis zu 90 %.

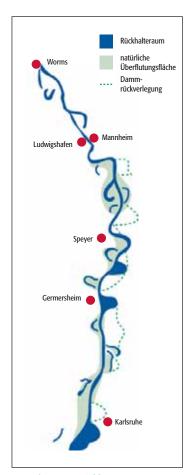
Neben dem Erhalt bestehender Auwälder und Überflutungsflächen ist deshalb deren Vergrößerung ein wichtiger Beitrag zum Hochwasserschutz. Neue Überflutungsflächen können z. B. durch Deichrückverlegungen geschaffen

Deichrückverlegung (Abb. 13.3): Ein neuer Deich landeinwärts, den alten aufgeben – so entstehen neue Überflutungsflächen.

werden. Dabei wird im Hinterland ein neuer Deich gebaut, der alte flussnahe wird teilweise oder vollständig beseitigt (Folie 13, Abb. 13.3).

In den Hochwasserschutzkonzepten des Bundes und der Länder sind zahlreiche mögliche Deichrückverlegungen aufgelistet. In vielen Fällen lässt die Realisierung aber auf sich warten, da benötigte Flächen in Privatbesitz sind, die Eigentümer Einschränkungen in der Bewirt-

Dem Fluss Raum geben: Deichverlegung in der Elbtalaue bei Lenzen.


schaftung fürchten und deshalb der Umsetzung nicht zustimmen. Hier ist von Seiten der Behörden und der Politik viel Überzeugungsarbeit und "Fingerspitzengefühl" nötig.

i

Wasserrahmenrichtlinie der EU (WRRL)

Die Wasserrahmenrichtlinie der EU (WRRL) fordert, die europäischen Gewässer in einen "guten Zustand" zu überführen. Dies beinhaltet neben der Gewässergüte auch die Struktur, was sich wiederum auf den Hochwasserschutz auswirkt. Dem Fluss mehr Raum zu geben, ist dabei eine der wichtigsten

Das Wasserhaushaltsgesetz regelt, dass Ausbauten an Flüssen grundsätzlich hochwasserneutral zu erfolgen haben. D. h. Maßnahmen, die die Hochwassergefahr erhöhen, müssen ausgeglichen werden, z. B. durch Deichrückverlegungen, Anschluss an Altarme o. Ä. Der Gewässerausbau darf natürliche Rückhalteräume nicht zerstören.

Retentionsräume (Abb. 13.2): Vorschläge für den Oberrhein.

- Ein wirkungsvoller Hochwasserschutz schließt technische Schutzbauten ebenso ein wie Hochwasservorsorge und natürliche Überflutungsflächen. Er erfordert auch eine länderübergreifende Zusammenarbeit, denn Hochwasser macht an Grenzen nicht halt.
- Zum technischen Hochwasserschutz gehören Deiche, Schutzmauern und mobile Schutzwände sowie Wasserrückhaltesysteme wie Polder oder Talsperren. Schutzbauten allein reichen jedoch nicht, denn jeder Deich hält dem Hochwasser nur bis zu einer definierten Grenze stand.
- Große Bedeutung kommt der Hochwasservorsorge zu. Hierzu zählen zuverlässige Warndienste, detaillierte Maßnahmenpläne für den Hochwasserfall sowie das richtige Verhalten des einzelnen Bürgers (Informations- und Verhaltensvorsorge). Wichtige Vorsorgemaßnahmen sind auch hochwasserangepasste Bauweisen (Bauvorsorge) oder der Verzicht auf Neubauten in Risikogebieten (Flächenvorsorge).
- Eine intakte Aue, die dem Fluss bei Hochwasser ausreichend Raum gibt, kann Hochwasserspitzen dämpfen und den Abfluss verzögern. Der Neuschaffung von natürlichen Retentionsräumen, z. B. durch Deichrückverlegungen, kommt deshalb in aktuellen Hochwasserschutzkonzepten oberste Priorität zu.

Mit Hochwasser leben.

Intakte Auen sind nicht nur für den Fluss wichtig, sondern auch für uns. Unsere Flüsse brauchen wieder mehr Platz. Denn das nächste Hochwasser kommt bestimmt ...

Dieses Kapitel zeigt

- wie der Klimawandel die Hochwassergefahr verstärkt
- was wir tun können, um darauf zu reagieren.

Auf den Klimawandel einstellen.

Hochwasser wird es in Zukunft wahrscheinlich nicht weniger geben – im Gegenteil. Experten erwarten aufgrund des Klimawandels eine Zunahme der Ereignisse sowohl in der Zahl als auch in der Stärke.

Gewitter im Anzug: Experten rechnen mit einer Zunahme von Starkregenfällen durch den Klimawandel.

Zu erwarten ist z. B. eine höhere Hochwassergefahr im Winter, da die Niederschläge häufiger als Regen fallen und nicht mehr in Form von Schnee gespeichert werden.

Im Frühjahr und Sommer ist mit vermehrten und heftigeren Starkregen zu rechnen, im Frühjahr kombiniert mit der Schneeschmelze in den Mittelgebirgen und den Alpen. Diese Zunahme lokaler Starkregenereignisse ist bereits statistisch nachweisbar, auch wenn insgesamt die Niederschläge im Sommer eher abnehmen werden.

In den Bundesländern Bayern und Baden-Württemberg wurden die Auswirkungen des Klimawandels in Teilgebieten detailliert untersucht (Projekt KLIWA). In den Wintermonaten ist bei kleineren Hochwassern im Süden Baden-Württembergs seit den 1970er Jahren bereits eine Zunahme zu verzeichnen. Für das Neckar-Einzugsgebiet wird bis 2050 eine Zunahme der mittleren Hochwasserabflüsse um ca. 40–50% prognostiziert, bei den 100-jährlichen Ereignissen um ca. 15%.

In Bayern z. B. gilt daher seit 2004 der "Lastfall Klimaänderung" bei der Bemessung neuer Hochwasserschutzmaßnahmen. Dabei wird die statistische Bemessungsgrundlage (i. d. R. ein 100-jährliches Hochwasser) um einen Klimaänderungsfaktor von 15% erhöht.

Im städtischen Bereich ermitteln die Forschungsprojekte "KlimaNet" und "Urban Water", wie Niederschläge dezentral abgeleitet, Grünflächen zur Zwischenspeicherung von Wasser vernetzt sowie Hochwasserschutz und Erholungsnutzung Hand in Hand gehen können.

Wenn das Hochwasser kommt.

Die Anforderungen an den Hochwasserschutz werden also eher höher als niedriger. Entscheidend wird sein, technische Maßnahmen mit entsprechender Vorsorge zu verbinden. Auf fast allen Ebenen können dazu sinnvolle Beiträge geleistet werden:

- Bund und Länder:
 Kooperation auf nationaler und internationaler
 Ebene
- Regionalplanung: Ausweisung von Vorranggebieten für Hochwasserabfluss und Rückhalt
- Städte und Gemeinden: Bauleitplanung, Hochwasserschutzkonzepte an kleinen Gewässern, Alarm- und Einsatzpläne, Koordination der Hilfskräfte im Hochwasserfall
- Wasserwirtschaft:
 Planung und Realisierung von Hochwasserschutzkonzepten, Beratung, Hochwassernachrichtendienste
- Land- und Forstwirtschaft: angepasste Bodennutzung, Flächenfreigabe für Retentionsräume
- Naturschutz: Förderung und Entwicklung intakter Flussauen
- Der einzelne Bürger:
 Eigenvorsorge, Informationsbeschaffung und Verhalten im Hochwasserfall

Natürlicher Hochwasserschutz: Eine intakte Aue wie hier am Kühkopf in Hessen gibt dem Fluss Raum zum Ausufern.

Auenschutz ist Hochwasserschutz.

Der Erhalt und die Renaturierung von Auen ist als wichtige Hochwasserschutzstrategie erkannt. Dazu einige Beispiele:

Im Biosphärenreservat "Mittlere Elbe" sind die letzten zusammenhängenden großen Auwälder an der Elbe dauerhaft geschützt. Schutzmaßnahmen sollen die nachhaltige Entwicklung des Gebiets ohne ständige menschliche Eingriffe ermöglichen. Hier überlebte übrigens auch die einzige Biberpopulation Mitteleuropas in ihrem ursprünglichen Lebensraum.

Die letzten echten Auwälder entlang des nördlichen Oberrheins liegen am Kühkopf in Hessens größtem Naturschutzgebiet – mit beeindruckenden Hartholzauwäldern und einer faszinierenden Tierund Pflanzenwelt. Das Gebiet ist für den Hochwasserschutz von unschätzbarem Wert und zugleich ein wichtiges Erholungsgebiet in der dichtbesiedelten Rheinebene. Ein altes Hofgut im Zentrum des Gebietes wurde revitalisiert, um ein neues Informationszentrum einzurichten. Information, Wissensvermittlung, Darstellung von Zusammenhängen – auch das ist ein wichtiger Baustein für den Hochwasserschutz.

Im Land Brandenburg lief zwischen 2004 und 2009 mit der **Deichrückverlegung Lenzen** ein Pilotprojekt mit nationaler und internationaler Ausstrahlung. Auf knapp über 6 km Flusslänge wurde mitten im Biosphärenreservat "Flusslandschaft Elbe-Brandenburg" ein neuer Überflutungsraum geschaffen, in dem sich neue Lebensräume

entwickeln und der eine auflaufende Hochwasserwelle der Elbe um gut 40 cm kappen kann.

Neben solchen dringend nötigen Großprojekten sind es aber auch viele kleine Maßnahmen, die in der Summe helfen können. Auch die Allianz Umweltstiftung leistet mit unterschiedlichsten Projekten einen direkten oder indirekten Beitrag zum Hochwasserschutz:

1

Stiftungsprojekte

- Vorsorgender Hochwasserschutz an der Elbe
- Renaturierung von Fließgewässern im Thüringer Wald
- Wanderausstellung "Naturereignis Hochwasser"
- Lebendiges Gewässer Dumme im Wendland
- Info-System für den Hochwasserschutz
- Wiederbelebung des Kühnauer Sees bei Dessau
- Gewässerentwicklung bei Bad Säckingen
- Wiederbelebung einer Moorlandschaft bei Bad Tölz
- Naturinformationszentrum Kühkopfinsel bei Darmstadt
- Haus am Strom bei Passau
- Öffnung des Elstermühlgrabens
- Revitalisierung des Ratzengrabens in Biberach
- Naturnahe Gestaltung am Neckar

Details zu diesen Projekten finden Sie unter: www.allianz-umweltstiftung.de

- Der Klimawandel wird die Hochwassergefahr in Zukunft eher verstärken.
- Beim Hochwasserschutz sind alle gefordert: staatliche Stellen, verschiedene Institutionen und Nutzer sowie jeder einzelne Bewohner.
- Der Erhalt und die Renaturierung von Auen gilt als besonders vordringliches Ziel. Dies fördert nicht nur den Hochwasserschutz, sondern verbessert auch den Zustand unserer Gewässer.

Glossar.

Abfluss

Teil des Niederschlags, der nicht versickert, sondern oberirdisch in Bächen und Flüssen abfließt. Im Fließgewässer wird das Abflussvolumen in m^3/s gemessen.

Altarm / Altwasser

Vom Hauptfluss abgetrennte ehemalige Flussschlingen mit weitgehend stehendem Wasser, die allenfalls noch bei Hochwasser durchströmt werden. Altarme sind dabei noch über mindestens eine Stelle mit dem Hauptfluss verbunden, Altwasser haben keine Verbindung mehr.

Aue

Teil des Talraumes, der bei Hochwasser überflutet wird (S. 3).

Deich

Künstlich aufgeschütteter Damm an Flussufern zum Schutz von Siedlungen und landwirtschaftlichen Flächen vor Überflutungen.

Einzugsgebiet

Gebiet, aus dem einem Gewässer oberirdischund unterirdisch Wasser zufließt. Einzugsgebiete sind durch Wasserscheiden begrenzt.

Erosion

Hier: Mitnahme von Gestein, Geröll, Sand und Kies durch die Kräfte des strömenden Wassers (S. 4/5).

Flussbett

Vertiefung in der Landfläche, in der ein Fluss gewöhnlich fließt.

Flussregulierung

Maßnahmen zum Ausbau von Gewässern: Begradigung des Flusslaufes, Durchstich von Flussschleifen, Befestigung der Ufer, Eindeichungen. Ziele: Verbesserung der Schiffbarkeit, Hochwasserschutz, bessere Nutzung der Talräume. Heute ist ein Großteil der Fließgewässer in Mitteleuropa mehr oder weniger stark reguliert. Besonders das Abtrennen der Aue vom Flusslauf hat sich vielfach als problematisch für das Hochwasserverhalten erwiesen.

Hochwasserscheitel

Höchster Wasserstand einer > Hochwasserwelle und damit Höhepunkt eines Hochwasserereignisses.

Hochwasserwelle

Die Wasserstände, in regelmäßigen Zeitabständen an einem > Pegel gemessen, ergeben eine Hochwasserganglinie in charakteristischer Wellenform. Sie dokumentiert das Ansteigen und Abfallen eines Hochwassers an einem bestimmten Ort.

Infiltration

Prozess, bei dem Niederschlagswasser im Boden einsickert. Die Infiltrationsrate bezeichnet die Wassermenge, die pro Zeiteinheit im Boden einsickern kann, z. B. Liter pro m² und Stunde.

Jährlichkeit

Statistischer Wert, der die Wiederkehrswahrscheinlichkeit eines Hochwassers angibt. So ist z. B. ein jährliches Hochwasser in vergleichbarer Höhe jedes Jahr zu erwarten, ein 10-jährliches Hochwasser alle 10 Jahre, ein 50-jährliches alle 50 Jahre. Ein Hochwasser der Jährlichkeit HQ 100 wird oft auch als Jahrhunderthochwasser bezeichnet.

Pegel

Messstelle zur Ermittlung des Wasserstandes. Die einfachste Form ist eine gelb-schwarze Latte mit Zentimeter-Einteilung. Größere Messstellen besitzen nahezu immer eine Schreibregistrierung, bei der der Wasserstand über einen Schwimmerkörper auf ein Diagramm übertragen wird. Moderne Pegel erfassen den Wasserstand digital und geben ihn automatisch an die Meldestellen weiter.

Polder

Hier: Hochwasser- oder Hochwasserschutzpolder. Tiefliegendes Gelände, das durch Deiche vom Fluss abgetrennt ist. Im Hochwasserfall werden die Deiche ab einem bestimmten Wasserstand überströmt, sodass der Polder als Wasserrückhalteraum dienen kann. Gesteuerte Polder lassen das Wasser über Einlaufbauwerke ein- und über Auslaufbauwerke ausströmen (S. 20/21).

Retention

Zurückhalten von Wasser und damit Dämpfen einer > Hochwasserwelle. Eine Retentionsfläche oder -gebiet ist eine Fläche innerhalb des Flussbettes bzw. der Aue, in der Wasser zwischengespeichert und zurückgehalten werden kann.

Sedimentation

Hier: Ablagerung von mitgeführtem Material, Sediment (Kies, Sand, Schlamm) durch den Fluss (S. 4/5).

Seitenerosion

> Erosion von Material am seitlichen Flussufer, v. a. in der Außenkurve eines Flusslaufes (Prallhang, S. 4/5).

Starkregen

Sehr heftige, kurzzeitige Niederschläge, in denen auf relativ begrenzter Fläche große Wassermengen niedergehen, oft verbunden mit schweren Gewittern.

Sturzflut

Meist durch > Starkregenereignisse oder auch durch Dammbrüche ausgelöst. Plötzliches und starkes Anschwellen eines ansonsten meist kleinen und unbedeutenden Gewässers. Große Zerstörungskraft.

Tiefenerosion

> Erosion an der Flusssohle, meist ausgelöst durch eine Flussbegradigung und damit folgende Beschleunigung der Fließgeschwindigkeit. Der Fluss tieft sich dabei immer weiter in den Untergrund ein, im Umland sinkt der Grundwasserspiegel.

Literatur und Internet.

Literatur:

- Allianz Umweltstiftung/Verwaltung
 Biosphärenreservat Mittelelbe (2014):
 Wanderausstellung "Naturereignis Hochwasser"
- · Allianz Umweltstiftung (2006): Publikationsreihe Wissen. Informationen zum Thema "Wasser" – Lebensraum, Lebensmittel und Lebenselixier
- Bayerisches Landesamt für Umwelt (Hrsg.)
 (2013): UmweltWissen Wasser:
 Hochwasserschutz Eigenvorsorge, Augsburg
 (Faltblatt)
- Bayerisches Landesamt für Umwelt (Hrsg.)
 (2011): Hochwasserrisiko frühzeitig erkennen,
 Augsburg (Faltblatt)
- Bayerisches Landesamt für Umwelt (Hrsg.) (2010): Unterhaltung kleiner Gewässer und vorbeugender Hochwasserschutz, Augsburg (Faltblatt)
- Bayerisches Landesamt für Umwelt (Hrsg.)
 (2008): Leben mit dem Fluss Hochwasser im Spiegel der Zeit, Augsburg
- · Bayerisches Landesamt für Wasserwirtschaft (2004): Spektrum Wasser 1 Hochwasser, Naturereignis und Gefahr, München
- Bayerisches Landesamt für Wasserwirtschaft (2004): Vorranggebiete für den Hochwasserabfluss und -rückhalt, München
- Bayerisches Staatsministerium für Umwelt, Gesundheit und Verbraucherschutz (2005): Schutz vor Hochwasser in Bayern, Strategie und Beispiele
- Bundesanstalt für Gewässerkunde (2013):
 Länderübergreifende Analyse des Juni-Hochwassers 2013, Koblenz
- · Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit / Bundesamt für Naturschutz (Hrsg.) (2009): Auenzustandsbericht. Flussauen in Deutschland, Berlin, Bonn
- Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit / Bundesamt für Naturschutz (Hrsg.) (2010): Die Wasserrahmenrichtlinie – Auf dem Weg zu guten Gewässern, Berlin

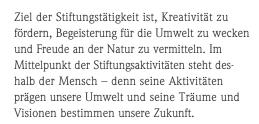
- Deutscher Wetterdienst (2013): Das Hochwasser an Elbe und Donau im Juni 2013, Offenbach/Main
- · Umweltbundesamt (Hrsg.) (2011): Anpassung an den Klimawandel – Hochwasserschutz
- Umweltbundesamt (Hrsg.) (2011): Hochwasser
 Verstehen, Erkennen, Handeln, Dessau-Roßlau
- Umweltbundesamt / Kompetenzzentrum Klimafolgen und Anpassung (Hrsg.) (2011): Anpassung an den Klimawandel – Hochwasserschutz.
- > Wasserwirtschaftliche Berichte der einzelnen Bundesländer

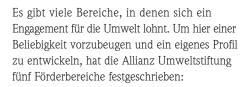
Internet:

- > www.allianz-umweltstiftung.de
- > www.anpassung.net
- > www.bfn.de > www. geodienste.bfn.de/ flussauen
- > www.bmub.bund.de
 - > themen/wasser-abfall-boden/binnengewaesser/hochwasser/
- > www.umweltbundesamt.de, www.uba.de > /themen/wasser/hoch-niedrigwasser
- > Hochwassernachrichtendienste der Länder www.hochwasserzentralen.de

Allianz Umweltstiftung.

Umweltschutz macht Spaß, wenn er sich nicht nur auf Verbote und den erhobenen Zeigefinger beschränkt – das zeigt die Allianz Umweltstiftung mit ihren Förderprojekten.




"Mitwirken an einem lebenswerten Dasein in einer sicheren Zukunft".

Diese Maxime hat die Allianz Umweltstiftung in ihrer Satzung verankert. Mit Gründung der Umweltstiftung im Jahr 1990 setzte die Allianz ein weiteres Zeichen für die Übernahme gesellschaftlicher Verantwortung.

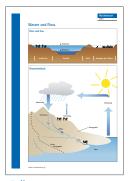
- Umwelt- und Klimaschutz
- Leben in der Stadt
- Nachhaltige Regionalentwicklung
- Biodiversität
- Umweltkommunikation

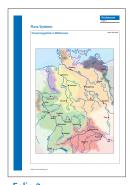
Neben der Fördertätigkeit in diesen Bereichen werden die Aktivitäten der Stiftung durch die Benediktbeurer Gespräche und die Aktion "Der Blaue Adler" abgerundet.

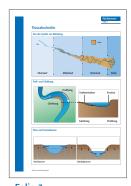
Um möglichst viele Menschen für ein Engagement in Sachen Umwelt zu begeistern, erstellt die Allianz Umweltstiftung in ihrer Publikationsreihe "Wissen" Informationsbroschüren. Bisher sind die Ausgaben Wasser, Tropenwald, Sonnenenergie für Schulen, Klima, Klimaschutz und Klimaschutz an Schulen erhältlich.

Deutscher Klimapreis der Allianz Umweltstiftung.

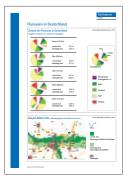
Um das aktive Klimaschutz-Engagement von Schülern und Schulen auszuzeichnen, hat die Allianz Umweltstiftung den Deutschen Klimapreis ins Leben gerufen. Er wird jährlich verliehen und soll Schüler dazu motivieren, sich dem wichtigen Thema Klimaschutz mit Spaß und positivem Engagement zu widmen. Der Deutsche Klimapreis der Allianz Umweltstiftung besteht aus fünf gleichwertigen Auszeichnungen, die mit jeweils 10.000 Euro dotiert sind. Zusätzlich werden 15 Anerkennungspreise von je 1.000 Euro vergeben.



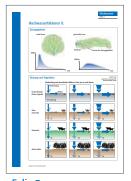


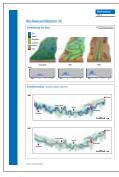

Folien.

Folie 1 Wasser und Fluss.

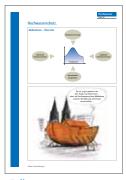

Folie 2 Fluss-Systeme.

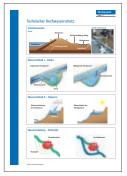
Flussabschnitte.


Folie 4 Leben in der Aue.


Folie 5 Flussauen in Deutschland.

Folie 6 Hochwasserfaktoren I.


Hochwasserfaktoren II.


Folie 7 Hochwasserfaktoren III.

Folie 8 Hochwasserereignisse.

Folie 9 Hochwasserschutz.

Folie 10 Technischer Hochwasserschutz

Folie 11 Hochwasservorsorge.

Folie 13 Gefahrenbewusstsein und natürlicher Schutz.

Impressum.

Herausgeber

Allianz Umweltstiftung Pariser Platz 6 · 10117 Berlin Telefon 030 2067 1595-50 Telefax 030 2067 1595-60

E-Mail: info@allianz-umweltstiftung.de Internet: www.allianz-umweltstiftung.de

Konzeption, Redaktion und Text

Allianz Umweltstiftung, Peter Wilde IMAGO 87, Detlef Mueller

Grafiken und Zeichnungen

IMAGO 87, Martin Kirsch, Detlef Mueller

Gestaltung und Realisation

IMAGO 87 Hauptstraße 22 85395 Attenkirchen E-Mail: info@imago87.de Internet: www.imago87.de

Druck

Druckhaus Kastner, Wolnzach

Gedruckt auf FSC-zertifiziertem Papier.

April 2014

1. Auflage

Fotos

Allianz Umweltstiftung: 32l2, 32l3, 32l4 Biosphärengebiet Schwäbische Alb: 32l1 Förderverein Neuwieder Deich e.V.: 15m Fotolia: Titel, 11, 12m, 14o, 22m, Folie 4: 3, 4 Leidorf, Klaus: 5mr, 13, 16u, 17o, 18 (beide), 23o, 23u Kirsch, Martin: 24

Kuhn, Regine: 320

Münchner Stadtmuseum, Sammlung Grafik/Plakat/

Gemälde: 150 Panthermedia: 10, 26

Polizeifliegerstaffel Hessen (Juni 2013); Projekt

"Schatzinsel Kühkopf": 3r, 8u

Purps, Jochen: 25

Hochwasserschutzzentrale Köln, StEB Köln: 2, 12u,

15u, 16o, 21o, 22m, Folie 11

Wikipedia: 50, 14m, 17m, 17u, 19 (alle)

Willner, Wolfgang: 7mo

www.flussgebiete.nrw.de: Folie 13: 1

Zettl, Herbert: U1, 3l, 6, 7l, 7o, 7mu, 7u, 8o (beide),

9, 20, 27, 31, Folie 4: 1, 2, 5, 6

(r: rechts; l: links; o: oben; u: unten; m: mitte; F: Folie; U: Umschlag)